update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-base-timit-demo-google-colab
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-base-timit-demo-google-colab
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.5725
|
18 |
+
- Wer: 0.3413
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 1000
|
44 |
+
- num_epochs: 30
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
51 |
+
| 3.508 | 1.0 | 500 | 1.9315 | 0.9962 |
|
52 |
+
| 0.8832 | 2.01 | 1000 | 0.5552 | 0.5191 |
|
53 |
+
| 0.4381 | 3.01 | 1500 | 0.4451 | 0.4574 |
|
54 |
+
| 0.2983 | 4.02 | 2000 | 0.4096 | 0.4265 |
|
55 |
+
| 0.2232 | 5.02 | 2500 | 0.4280 | 0.4083 |
|
56 |
+
| 0.1811 | 6.02 | 3000 | 0.4307 | 0.3942 |
|
57 |
+
| 0.1548 | 7.03 | 3500 | 0.4453 | 0.3889 |
|
58 |
+
| 0.1367 | 8.03 | 4000 | 0.5043 | 0.4138 |
|
59 |
+
| 0.1238 | 9.04 | 4500 | 0.4530 | 0.3807 |
|
60 |
+
| 0.1072 | 10.04 | 5000 | 0.4435 | 0.3660 |
|
61 |
+
| 0.0978 | 11.04 | 5500 | 0.4739 | 0.3676 |
|
62 |
+
| 0.0887 | 12.05 | 6000 | 0.5052 | 0.3761 |
|
63 |
+
| 0.0813 | 13.05 | 6500 | 0.5098 | 0.3619 |
|
64 |
+
| 0.0741 | 14.06 | 7000 | 0.4666 | 0.3602 |
|
65 |
+
| 0.0654 | 15.06 | 7500 | 0.5642 | 0.3657 |
|
66 |
+
| 0.0589 | 16.06 | 8000 | 0.5489 | 0.3638 |
|
67 |
+
| 0.0559 | 17.07 | 8500 | 0.5260 | 0.3598 |
|
68 |
+
| 0.0562 | 18.07 | 9000 | 0.5250 | 0.3640 |
|
69 |
+
| 0.0448 | 19.08 | 9500 | 0.5215 | 0.3569 |
|
70 |
+
| 0.0436 | 20.08 | 10000 | 0.5117 | 0.3560 |
|
71 |
+
| 0.0412 | 21.08 | 10500 | 0.4910 | 0.3570 |
|
72 |
+
| 0.0336 | 22.09 | 11000 | 0.5221 | 0.3524 |
|
73 |
+
| 0.031 | 23.09 | 11500 | 0.5278 | 0.3480 |
|
74 |
+
| 0.0339 | 24.1 | 12000 | 0.5353 | 0.3486 |
|
75 |
+
| 0.0278 | 25.1 | 12500 | 0.5342 | 0.3462 |
|
76 |
+
| 0.0251 | 26.1 | 13000 | 0.5399 | 0.3439 |
|
77 |
+
| 0.0242 | 27.11 | 13500 | 0.5626 | 0.3431 |
|
78 |
+
| 0.0214 | 28.11 | 14000 | 0.5749 | 0.3408 |
|
79 |
+
| 0.0216 | 29.12 | 14500 | 0.5725 | 0.3413 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.17.0
|
85 |
+
- Pytorch 1.12.0+cu113
|
86 |
+
- Datasets 1.18.3
|
87 |
+
- Tokenizers 0.12.1
|