FAICAM commited on
Commit
c673733
·
1 Parent(s): ee3736e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-base-timit-demo-google-colab
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-base-timit-demo-google-colab
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.5725
18
+ - Wer: 0.3413
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1000
44
+ - num_epochs: 30
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
51
+ | 3.508 | 1.0 | 500 | 1.9315 | 0.9962 |
52
+ | 0.8832 | 2.01 | 1000 | 0.5552 | 0.5191 |
53
+ | 0.4381 | 3.01 | 1500 | 0.4451 | 0.4574 |
54
+ | 0.2983 | 4.02 | 2000 | 0.4096 | 0.4265 |
55
+ | 0.2232 | 5.02 | 2500 | 0.4280 | 0.4083 |
56
+ | 0.1811 | 6.02 | 3000 | 0.4307 | 0.3942 |
57
+ | 0.1548 | 7.03 | 3500 | 0.4453 | 0.3889 |
58
+ | 0.1367 | 8.03 | 4000 | 0.5043 | 0.4138 |
59
+ | 0.1238 | 9.04 | 4500 | 0.4530 | 0.3807 |
60
+ | 0.1072 | 10.04 | 5000 | 0.4435 | 0.3660 |
61
+ | 0.0978 | 11.04 | 5500 | 0.4739 | 0.3676 |
62
+ | 0.0887 | 12.05 | 6000 | 0.5052 | 0.3761 |
63
+ | 0.0813 | 13.05 | 6500 | 0.5098 | 0.3619 |
64
+ | 0.0741 | 14.06 | 7000 | 0.4666 | 0.3602 |
65
+ | 0.0654 | 15.06 | 7500 | 0.5642 | 0.3657 |
66
+ | 0.0589 | 16.06 | 8000 | 0.5489 | 0.3638 |
67
+ | 0.0559 | 17.07 | 8500 | 0.5260 | 0.3598 |
68
+ | 0.0562 | 18.07 | 9000 | 0.5250 | 0.3640 |
69
+ | 0.0448 | 19.08 | 9500 | 0.5215 | 0.3569 |
70
+ | 0.0436 | 20.08 | 10000 | 0.5117 | 0.3560 |
71
+ | 0.0412 | 21.08 | 10500 | 0.4910 | 0.3570 |
72
+ | 0.0336 | 22.09 | 11000 | 0.5221 | 0.3524 |
73
+ | 0.031 | 23.09 | 11500 | 0.5278 | 0.3480 |
74
+ | 0.0339 | 24.1 | 12000 | 0.5353 | 0.3486 |
75
+ | 0.0278 | 25.1 | 12500 | 0.5342 | 0.3462 |
76
+ | 0.0251 | 26.1 | 13000 | 0.5399 | 0.3439 |
77
+ | 0.0242 | 27.11 | 13500 | 0.5626 | 0.3431 |
78
+ | 0.0214 | 28.11 | 14000 | 0.5749 | 0.3408 |
79
+ | 0.0216 | 29.12 | 14500 | 0.5725 | 0.3413 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.17.0
85
+ - Pytorch 1.12.0+cu113
86
+ - Datasets 1.18.3
87
+ - Tokenizers 0.12.1