Astra / scripts /nuscenes_keyframes_processor.py
EvanEternal's picture
Upload 86 files
08bf07d verified
raw
history blame
9.13 kB
import os
import json
import numpy as np
from nuscenes.nuscenes import NuScenes
import multiprocessing as mp
from tqdm import tqdm
import cv2
from PIL import Image
# Configuration
VERSION = 'v1.0-trainval'
DATA_ROOT = '/share_zhuyixuan05/public_datasets/nuscenes/nuscenes-download/data'
OUTPUT_DIR = '/share_zhuyixuan05/zhuyixuan05/nuscenes_video_generation_dynamic'
NUM_PROCESSES = 30
PROCESSED_SCENES_FILE = os.path.join(OUTPUT_DIR, 'processed_scenes_dynamic.txt')
CAMERA_CHANNELS = ['CAM_FRONT']
def calculate_relative_pose(pose_current, pose_reference):
"""计算相对于参考pose的相对位置和旋转"""
trans_ref = np.array(pose_reference['translation'])
trans_cur = np.array(pose_current['translation'])
# 计算相对位置
relative_translation = trans_cur - trans_ref
relative_pose = {
'relative_translation': relative_translation.tolist(),
'current_rotation': pose_current['rotation'],
'reference_rotation': pose_reference['rotation'],
'timestamp': pose_current['timestamp']
}
return relative_pose
def extract_full_scene_with_keyframes(nusc, scene_token, scene_name, output_dir, channel):
"""提取完整场景并记录关键帧位置"""
scene_record = nusc.get('scene', scene_token)
current_sample_token = scene_record['first_sample_token']
# 收集所有sample_data tokens、ego_poses和关键帧标记
all_sd_tokens = []
all_ego_poses = []
keyframe_indices = [] # 记录哪些帧是关键帧
frame_index = 0
while current_sample_token:
sample_record = nusc.get('sample', current_sample_token)
if channel in sample_record['data']:
current_sd_token = sample_record['data'][channel]
# 从keyframe开始,收集所有sample_data
while current_sd_token:
sd_record = nusc.get('sample_data', current_sd_token)
all_sd_tokens.append(current_sd_token)
# 记录ego_pose和关键帧位置
if sd_record['is_key_frame']:
ego_pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
all_ego_poses.append(ego_pose_record)
keyframe_indices.append(frame_index)
else:
all_ego_poses.append(None)
frame_index += 1
current_sd_token = sd_record['next'] if sd_record['next'] != '' else None
break
current_sample_token = sample_record['next'] if sample_record['next'] != '' else None
# 检查是否有足够的帧数和关键帧
total_frames = len(all_sd_tokens)
num_keyframes = len(keyframe_indices)
if total_frames < 30 or num_keyframes < 3: # 至少需要30帧和3个关键帧
print(f"Scene {scene_name}: Insufficient frames ({total_frames}) or keyframes ({num_keyframes}), skipping...")
return 0
# 创建场景目录
scene_dir = os.path.join(output_dir, 'scenes', f"{scene_name}_{channel}")
os.makedirs(scene_dir, exist_ok=True)
# 渲染完整视频
video_path = os.path.join(scene_dir, 'full_video.mp4')
success = render_full_video(nusc, all_sd_tokens, video_path)
if not success:
print(f"Failed to render video for {scene_name}")
return 0
# 处理关键帧的poses
keyframe_poses = []
valid_keyframes = []
for i, frame_idx in enumerate(keyframe_indices):
pose = all_ego_poses[frame_idx]
if pose is not None:
keyframe_poses.append(pose)
valid_keyframes.append(frame_idx)
# 保存完整的场景信息
scene_info = {
'scene_name': scene_name,
'channel': channel,
'total_frames': total_frames,
'keyframe_indices': valid_keyframes,
'keyframe_poses': keyframe_poses,
'sample_data_tokens': all_sd_tokens,
'video_path': 'full_video.mp4'
}
with open(os.path.join(scene_dir, 'scene_info.json'), 'w') as f:
json.dump(scene_info, f, indent=2)
print(f"Processed scene {scene_name}: {total_frames} frames, {len(valid_keyframes)} keyframes")
return 1
def render_full_video(nusc, sd_tokens, output_path):
"""渲染完整视频序列"""
if not sd_tokens:
return False
try:
# 获取第一帧来确定视频尺寸
first_sd = nusc.get('sample_data', sd_tokens[0])
first_image_path = os.path.join(nusc.dataroot, first_sd['filename'])
first_image = Image.open(first_image_path)
width, height = first_image.size
# 设置视频编码器
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, 10.0, (width, height))
for sd_token in sd_tokens:
sd_record = nusc.get('sample_data', sd_token)
image_path = os.path.join(nusc.dataroot, sd_record['filename'])
if os.path.exists(image_path):
image = cv2.imread(image_path)
if image is not None:
out.write(image)
out.release()
return True
except Exception as e:
print(f"Error rendering video to {output_path}: {str(e)}")
return False
def process_scene_dynamic(args):
"""处理单个场景,生成动态长度数据"""
scene_token, channels = args
nusc = NuScenes(version=VERSION, dataroot=DATA_ROOT, verbose=False)
scene_record = nusc.get('scene', scene_token)
scene_name = scene_record['name']
success_channels = []
total_scenes = 0
try:
for channel in channels:
# 检查是否已经处理过
scene_dir = os.path.join(OUTPUT_DIR, 'scenes', f"{scene_name}_{channel}")
if os.path.exists(os.path.join(scene_dir, 'scene_info.json')):
print(f"Scene {scene_name} {channel} already processed, skipping...")
success_channels.append(channel)
continue
# 提取完整场景
scenes_count = extract_full_scene_with_keyframes(nusc, scene_token, scene_name, OUTPUT_DIR, channel)
if scenes_count > 0:
success_channels.append(channel)
total_scenes += scenes_count
else:
print(f"Failed to process scene {scene_name} {channel}")
except Exception as e:
print(f"Error processing {scene_name} ({scene_token}): {str(e)}")
return scene_token, success_channels, total_scenes
def get_processed_scenes():
"""读取处理记录"""
processed = {}
if os.path.exists(PROCESSED_SCENES_FILE):
with open(PROCESSED_SCENES_FILE, 'r') as f:
for line in f:
line = line.strip()
if not line or ':' not in line:
continue
token, channels_str = line.split(':', 1)
processed[token] = set(channels_str.split(','))
return processed
def main():
# 创建输出目录
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(os.path.join(OUTPUT_DIR, 'scenes'), exist_ok=True)
# 初始化数据集
nusc = NuScenes(version=VERSION, dataroot=DATA_ROOT, verbose=True)
all_scenes = {s['token']: s for s in nusc.scene}
# 加载处理记录
processed = get_processed_scenes()
# 生成任务列表
tasks = []
for scene_token in all_scenes:
processed_channels = processed.get(scene_token, set())
remaining = [ch for ch in CAMERA_CHANNELS if ch not in processed_channels]
if remaining:
tasks.append((scene_token, remaining))
print(f"Total scenes: {len(all_scenes)}")
print(f"Pending tasks: {len(tasks)}")
print("Processing full scenes with keyframe tracking...")
if not tasks:
print("All scenes already processed!")
return
# 创建进程池
total_scenes_created = 0
with mp.Pool(processes=NUM_PROCESSES) as pool:
results = []
for res in tqdm(pool.imap_unordered(process_scene_dynamic, tasks),
total=len(tasks),
desc="Processing Scenes"):
results.append(res)
# 更新处理记录
updated = get_processed_scenes()
for scene_token, success_chs, scenes_count in results:
if scene_token not in updated:
updated[scene_token] = set()
updated[scene_token].update(success_chs)
total_scenes_created += scenes_count
# 写入最终记录
with open(PROCESSED_SCENES_FILE, 'w') as f:
for token, chs in updated.items():
f.write(f"{token}:{','.join(sorted(chs))}\n")
print(f"\nProcessing completed!")
print(f"Total scenes created: {total_scenes_created}")
print(f"Output directory: {OUTPUT_DIR}")
if __name__ == '__main__':
main()