|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import math |
|
|
from typing import Tuple, Optional |
|
|
from einops import rearrange |
|
|
from .utils import hash_state_dict_keys |
|
|
try: |
|
|
import flash_attn_interface |
|
|
FLASH_ATTN_3_AVAILABLE = True |
|
|
except ModuleNotFoundError: |
|
|
FLASH_ATTN_3_AVAILABLE = False |
|
|
|
|
|
try: |
|
|
import flash_attn |
|
|
FLASH_ATTN_2_AVAILABLE = True |
|
|
except ModuleNotFoundError: |
|
|
FLASH_ATTN_2_AVAILABLE = False |
|
|
|
|
|
try: |
|
|
from sageattention import sageattn |
|
|
SAGE_ATTN_AVAILABLE = True |
|
|
except ModuleNotFoundError: |
|
|
SAGE_ATTN_AVAILABLE = False |
|
|
|
|
|
|
|
|
def flash_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, num_heads: int, compatibility_mode=False, causal=False): |
|
|
if compatibility_mode: |
|
|
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) |
|
|
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) |
|
|
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) |
|
|
x = F.scaled_dot_product_attention(q, k, v) |
|
|
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) |
|
|
elif FLASH_ATTN_3_AVAILABLE: |
|
|
q = rearrange(q, "b s (n d) -> b s n d", n=num_heads) |
|
|
k = rearrange(k, "b s (n d) -> b s n d", n=num_heads) |
|
|
v = rearrange(v, "b s (n d) -> b s n d", n=num_heads) |
|
|
x = flash_attn_interface.flash_attn_func(q, k, v) |
|
|
x = rearrange(x, "b s n d -> b s (n d)", n=num_heads) |
|
|
elif FLASH_ATTN_2_AVAILABLE: |
|
|
q = rearrange(q, "b s (n d) -> b s n d", n=num_heads) |
|
|
k = rearrange(k, "b s (n d) -> b s n d", n=num_heads) |
|
|
v = rearrange(v, "b s (n d) -> b s n d", n=num_heads) |
|
|
x = flash_attn.flash_attn_func(q, k, v) |
|
|
x = rearrange(x, "b s n d -> b s (n d)", n=num_heads) |
|
|
elif SAGE_ATTN_AVAILABLE: |
|
|
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) |
|
|
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) |
|
|
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) |
|
|
x = sageattn(q, k, v) |
|
|
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) |
|
|
else: |
|
|
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) |
|
|
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) |
|
|
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) |
|
|
x = F.scaled_dot_product_attention(q, k, v) |
|
|
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) |
|
|
return x |
|
|
|
|
|
|
|
|
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor): |
|
|
return (x * (1 + scale) + shift) |
|
|
|
|
|
|
|
|
def sinusoidal_embedding_1d(dim, position): |
|
|
sinusoid = torch.outer(position.type(torch.float64), torch.pow( |
|
|
10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2))) |
|
|
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) |
|
|
return x.to(position.dtype) |
|
|
|
|
|
|
|
|
def precompute_freqs_cis_3d(dim: int, end: int = 1024, theta: float = 10000.0): |
|
|
|
|
|
f_freqs_cis = precompute_freqs_cis(dim - 2 * (dim // 3), end, theta) |
|
|
h_freqs_cis = precompute_freqs_cis(dim // 3, end, theta) |
|
|
w_freqs_cis = precompute_freqs_cis(dim // 3, end, theta) |
|
|
return f_freqs_cis, h_freqs_cis, w_freqs_cis |
|
|
|
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int = 1024, theta: float = 10000.0): |
|
|
|
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2) |
|
|
[: (dim // 2)].double() / dim)) |
|
|
freqs = torch.outer(torch.arange(end, device=freqs.device), freqs) |
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
|
return freqs_cis |
|
|
|
|
|
|
|
|
def rope_apply(x, freqs, num_heads): |
|
|
x = rearrange(x, "b s (n d) -> b s n d", n=num_heads) |
|
|
x_out = torch.view_as_complex(x.to(torch.float64).reshape( |
|
|
x.shape[0], x.shape[1], x.shape[2], -1, 2)) |
|
|
x_out = torch.view_as_real(x_out * freqs).flatten(2) |
|
|
return x_out.to(x.dtype) |
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module): |
|
|
def __init__(self, dim, eps=1e-5): |
|
|
super().__init__() |
|
|
self.eps = eps |
|
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
|
|
def norm(self, x): |
|
|
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) |
|
|
|
|
|
def forward(self, x): |
|
|
dtype = x.dtype |
|
|
return self.norm(x.float()).to(dtype) * self.weight |
|
|
|
|
|
|
|
|
class AttentionModule(nn.Module): |
|
|
def __init__(self, num_heads, causal=False): |
|
|
super().__init__() |
|
|
self.num_heads = num_heads |
|
|
|
|
|
def forward(self, q, k, v): |
|
|
x = flash_attention(q=q, k=k, v=v, num_heads=self.num_heads) |
|
|
return x |
|
|
|
|
|
|
|
|
class SelfAttention(nn.Module): |
|
|
def __init__(self, dim: int, num_heads: int, eps: float = 1e-6, causal: bool = False): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.num_heads = num_heads |
|
|
self.head_dim = dim // num_heads |
|
|
|
|
|
self.q = nn.Linear(dim, dim) |
|
|
self.k = nn.Linear(dim, dim) |
|
|
self.v = nn.Linear(dim, dim) |
|
|
self.o = nn.Linear(dim, dim) |
|
|
self.norm_q = RMSNorm(dim, eps=eps) |
|
|
self.norm_k = RMSNorm(dim, eps=eps) |
|
|
|
|
|
self.attn = AttentionModule(self.num_heads) |
|
|
|
|
|
def forward(self, x, freqs): |
|
|
x = x.to(self.q.weight.dtype) |
|
|
q = self.norm_q(self.q(x)) |
|
|
k = self.norm_k(self.k(x)) |
|
|
v = self.v(x) |
|
|
q = rope_apply(q, freqs, self.num_heads) |
|
|
k = rope_apply(k, freqs, self.num_heads) |
|
|
x = self.attn(q, k, v) |
|
|
return self.o(x) |
|
|
|
|
|
|
|
|
class CrossAttention(nn.Module): |
|
|
def __init__(self, dim: int, num_heads: int, eps: float = 1e-6, has_image_input: bool = False): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.num_heads = num_heads |
|
|
self.head_dim = dim // num_heads |
|
|
|
|
|
self.q = nn.Linear(dim, dim) |
|
|
self.k = nn.Linear(dim, dim) |
|
|
self.v = nn.Linear(dim, dim) |
|
|
self.o = nn.Linear(dim, dim) |
|
|
self.norm_q = RMSNorm(dim, eps=eps) |
|
|
self.norm_k = RMSNorm(dim, eps=eps) |
|
|
self.has_image_input = has_image_input |
|
|
if has_image_input: |
|
|
self.k_img = nn.Linear(dim, dim) |
|
|
self.v_img = nn.Linear(dim, dim) |
|
|
self.norm_k_img = RMSNorm(dim, eps=eps) |
|
|
|
|
|
self.attn = AttentionModule(self.num_heads) |
|
|
|
|
|
def forward(self, x: torch.Tensor, y: torch.Tensor): |
|
|
if self.has_image_input: |
|
|
img = y[:, :257] |
|
|
ctx = y[:, 257:] |
|
|
else: |
|
|
ctx = y |
|
|
q = self.norm_q(self.q(x)) |
|
|
k = self.norm_k(self.k(ctx)) |
|
|
v = self.v(ctx) |
|
|
x = self.attn(q, k, v) |
|
|
if self.has_image_input: |
|
|
k_img = self.norm_k_img(self.k_img(img)) |
|
|
v_img = self.v_img(img) |
|
|
y = flash_attention(q, k_img, v_img, num_heads=self.num_heads) |
|
|
x = x + y |
|
|
return self.o(x) |
|
|
|
|
|
|
|
|
class DiTBlock(nn.Module): |
|
|
def __init__(self, has_image_input: bool, dim: int, num_heads: int, ffn_dim: int, eps: float = 1e-6): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.num_heads = num_heads |
|
|
self.ffn_dim = ffn_dim |
|
|
|
|
|
|
|
|
self.self_attn = SelfAttention(dim, num_heads, eps) |
|
|
self.cross_attn = CrossAttention( |
|
|
dim, num_heads, eps, has_image_input=has_image_input) |
|
|
self.norm1 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) |
|
|
self.norm2 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) |
|
|
self.norm3 = nn.LayerNorm(dim, eps=eps) |
|
|
self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU( |
|
|
approximate='tanh'), nn.Linear(ffn_dim, dim)) |
|
|
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) |
|
|
|
|
|
def forward(self, x, context, cam_emb, t_mod, freqs): |
|
|
|
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
|
self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(6, dim=1) |
|
|
input_x = modulate(self.norm1(x), shift_msa, scale_msa) |
|
|
|
|
|
if cam_emb is not None: |
|
|
|
|
|
cam_emb = cam_emb.to(self.cam_encoder.weight.dtype) |
|
|
cam_emb = self.cam_encoder(cam_emb) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cam_emb = cam_emb.unsqueeze(2).unsqueeze(3).repeat(1, 1, 30, 52, 1) |
|
|
|
|
|
cam_emb = rearrange(cam_emb, 'b f h w d -> b (f h w) d') |
|
|
input_x = input_x + cam_emb |
|
|
|
|
|
|
|
|
|
|
|
input_x = input_x.to(self.projector.weight.dtype) |
|
|
|
|
|
|
|
|
attn_output = self.self_attn(input_x, freqs) |
|
|
attn_output = attn_output.to(self.projector.weight.dtype) |
|
|
|
|
|
x = x + gate_msa * self.projector(attn_output) |
|
|
x = x.to(self.norm3.weight.dtype) |
|
|
x = x + self.cross_attn(self.norm3(x), context) |
|
|
input_x = modulate(self.norm2(x), shift_mlp, scale_mlp) |
|
|
x = x + gate_mlp * self.ffn(input_x) |
|
|
return x |
|
|
|
|
|
|
|
|
class MLP(torch.nn.Module): |
|
|
def __init__(self, in_dim, out_dim): |
|
|
super().__init__() |
|
|
self.proj = torch.nn.Sequential( |
|
|
nn.LayerNorm(in_dim), |
|
|
nn.Linear(in_dim, in_dim), |
|
|
nn.GELU(), |
|
|
nn.Linear(in_dim, out_dim), |
|
|
nn.LayerNorm(out_dim) |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.proj(x) |
|
|
|
|
|
|
|
|
class Head(nn.Module): |
|
|
def __init__(self, dim: int, out_dim: int, patch_size: Tuple[int, int, int], eps: float): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.patch_size = patch_size |
|
|
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) |
|
|
self.head = nn.Linear(dim, out_dim * math.prod(patch_size)) |
|
|
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) |
|
|
|
|
|
def forward(self, x, t_mod): |
|
|
shift, scale = (self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(2, dim=1) |
|
|
x = (self.head(self.norm(x) * (1 + scale) + shift)) |
|
|
return x |
|
|
|
|
|
|
|
|
class WanModel(torch.nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
in_dim: int, |
|
|
ffn_dim: int, |
|
|
out_dim: int, |
|
|
text_dim: int, |
|
|
freq_dim: int, |
|
|
eps: float, |
|
|
patch_size: Tuple[int, int, int], |
|
|
num_heads: int, |
|
|
num_layers: int, |
|
|
has_image_input: bool, |
|
|
): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.freq_dim = freq_dim |
|
|
self.has_image_input = has_image_input |
|
|
self.patch_size = patch_size |
|
|
|
|
|
self.patch_embedding = nn.Conv3d( |
|
|
in_dim, dim, kernel_size=patch_size, stride=patch_size) |
|
|
self.text_embedding = nn.Sequential( |
|
|
nn.Linear(text_dim, dim), |
|
|
nn.GELU(approximate='tanh'), |
|
|
nn.Linear(dim, dim) |
|
|
) |
|
|
self.time_embedding = nn.Sequential( |
|
|
nn.Linear(freq_dim, dim), |
|
|
nn.SiLU(), |
|
|
nn.Linear(dim, dim) |
|
|
) |
|
|
self.time_projection = nn.Sequential( |
|
|
nn.SiLU(), nn.Linear(dim, dim * 6)) |
|
|
self.blocks = nn.ModuleList([ |
|
|
DiTBlock(has_image_input, dim, num_heads, ffn_dim, eps) |
|
|
for _ in range(num_layers) |
|
|
]) |
|
|
self.head = Head(dim, out_dim, patch_size, eps) |
|
|
head_dim = dim // num_heads |
|
|
self.freqs = precompute_freqs_cis_3d(head_dim) |
|
|
|
|
|
if has_image_input: |
|
|
self.img_emb = MLP(1280, dim) |
|
|
|
|
|
def patchify(self, x: torch.Tensor): |
|
|
x = self.patch_embedding(x) |
|
|
grid_size = x.shape[2:] |
|
|
x = rearrange(x, 'b c f h w -> b (f h w) c').contiguous() |
|
|
return x, grid_size |
|
|
|
|
|
def unpatchify(self, x: torch.Tensor, grid_size: torch.Tensor): |
|
|
return rearrange( |
|
|
x, 'b (f h w) (x y z c) -> b c (f x) (h y) (w z)', |
|
|
f=grid_size[0], h=grid_size[1], w=grid_size[2], |
|
|
x=self.patch_size[0], y=self.patch_size[1], z=self.patch_size[2] |
|
|
) |
|
|
|
|
|
def forward(self, |
|
|
x: torch.Tensor, |
|
|
timestep: torch.Tensor, |
|
|
cam_emb: torch.Tensor, |
|
|
context: torch.Tensor, |
|
|
clip_feature: Optional[torch.Tensor] = None, |
|
|
y: Optional[torch.Tensor] = None, |
|
|
use_gradient_checkpointing: bool = False, |
|
|
use_gradient_checkpointing_offload: bool = False, |
|
|
**kwargs, |
|
|
): |
|
|
t = self.time_embedding( |
|
|
sinusoidal_embedding_1d(self.freq_dim, timestep)) |
|
|
t_mod = self.time_projection(t).unflatten(1, (6, self.dim)) |
|
|
context = self.text_embedding(context) |
|
|
|
|
|
if self.has_image_input: |
|
|
x = torch.cat([x, y], dim=1) |
|
|
clip_embdding = self.img_emb(clip_feature) |
|
|
context = torch.cat([clip_embdding, context], dim=1) |
|
|
|
|
|
x, (f, h, w) = self.patchify(x) |
|
|
|
|
|
freqs = torch.cat([ |
|
|
self.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), |
|
|
self.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), |
|
|
self.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) |
|
|
], dim=-1).reshape(f * h * w, 1, -1).to(x.device) |
|
|
|
|
|
def create_custom_forward(module): |
|
|
def custom_forward(*inputs): |
|
|
return module(*inputs) |
|
|
return custom_forward |
|
|
|
|
|
for block in self.blocks: |
|
|
if self.training and use_gradient_checkpointing: |
|
|
if use_gradient_checkpointing_offload: |
|
|
with torch.autograd.graph.save_on_cpu(): |
|
|
x = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(block), |
|
|
x, context, cam_emb, t_mod, freqs, |
|
|
use_reentrant=False, |
|
|
) |
|
|
else: |
|
|
x = torch.utils.checkpoint.checkpoint( |
|
|
create_custom_forward(block), |
|
|
x, context, cam_emb, t_mod, freqs, |
|
|
use_reentrant=False, |
|
|
) |
|
|
else: |
|
|
x = block(x, context, cam_emb, t_mod, freqs) |
|
|
|
|
|
x = self.head(x, t) |
|
|
x = self.unpatchify(x, (f, h, w)) |
|
|
return x |
|
|
|
|
|
@staticmethod |
|
|
def state_dict_converter(): |
|
|
return WanModelStateDictConverter() |
|
|
|
|
|
|
|
|
class WanModelStateDictConverter: |
|
|
def __init__(self): |
|
|
pass |
|
|
|
|
|
def from_diffusers(self, state_dict): |
|
|
rename_dict = { |
|
|
"blocks.0.attn1.norm_k.weight": "blocks.0.self_attn.norm_k.weight", |
|
|
"blocks.0.attn1.norm_q.weight": "blocks.0.self_attn.norm_q.weight", |
|
|
"blocks.0.attn1.to_k.bias": "blocks.0.self_attn.k.bias", |
|
|
"blocks.0.attn1.to_k.weight": "blocks.0.self_attn.k.weight", |
|
|
"blocks.0.attn1.to_out.0.bias": "blocks.0.self_attn.o.bias", |
|
|
"blocks.0.attn1.to_out.0.weight": "blocks.0.self_attn.o.weight", |
|
|
"blocks.0.attn1.to_q.bias": "blocks.0.self_attn.q.bias", |
|
|
"blocks.0.attn1.to_q.weight": "blocks.0.self_attn.q.weight", |
|
|
"blocks.0.attn1.to_v.bias": "blocks.0.self_attn.v.bias", |
|
|
"blocks.0.attn1.to_v.weight": "blocks.0.self_attn.v.weight", |
|
|
"blocks.0.attn2.norm_k.weight": "blocks.0.cross_attn.norm_k.weight", |
|
|
"blocks.0.attn2.norm_q.weight": "blocks.0.cross_attn.norm_q.weight", |
|
|
"blocks.0.attn2.to_k.bias": "blocks.0.cross_attn.k.bias", |
|
|
"blocks.0.attn2.to_k.weight": "blocks.0.cross_attn.k.weight", |
|
|
"blocks.0.attn2.to_out.0.bias": "blocks.0.cross_attn.o.bias", |
|
|
"blocks.0.attn2.to_out.0.weight": "blocks.0.cross_attn.o.weight", |
|
|
"blocks.0.attn2.to_q.bias": "blocks.0.cross_attn.q.bias", |
|
|
"blocks.0.attn2.to_q.weight": "blocks.0.cross_attn.q.weight", |
|
|
"blocks.0.attn2.to_v.bias": "blocks.0.cross_attn.v.bias", |
|
|
"blocks.0.attn2.to_v.weight": "blocks.0.cross_attn.v.weight", |
|
|
"blocks.0.ffn.net.0.proj.bias": "blocks.0.ffn.0.bias", |
|
|
"blocks.0.ffn.net.0.proj.weight": "blocks.0.ffn.0.weight", |
|
|
"blocks.0.ffn.net.2.bias": "blocks.0.ffn.2.bias", |
|
|
"blocks.0.ffn.net.2.weight": "blocks.0.ffn.2.weight", |
|
|
"blocks.0.norm2.bias": "blocks.0.norm3.bias", |
|
|
"blocks.0.norm2.weight": "blocks.0.norm3.weight", |
|
|
"blocks.0.scale_shift_table": "blocks.0.modulation", |
|
|
"condition_embedder.text_embedder.linear_1.bias": "text_embedding.0.bias", |
|
|
"condition_embedder.text_embedder.linear_1.weight": "text_embedding.0.weight", |
|
|
"condition_embedder.text_embedder.linear_2.bias": "text_embedding.2.bias", |
|
|
"condition_embedder.text_embedder.linear_2.weight": "text_embedding.2.weight", |
|
|
"condition_embedder.time_embedder.linear_1.bias": "time_embedding.0.bias", |
|
|
"condition_embedder.time_embedder.linear_1.weight": "time_embedding.0.weight", |
|
|
"condition_embedder.time_embedder.linear_2.bias": "time_embedding.2.bias", |
|
|
"condition_embedder.time_embedder.linear_2.weight": "time_embedding.2.weight", |
|
|
"condition_embedder.time_proj.bias": "time_projection.1.bias", |
|
|
"condition_embedder.time_proj.weight": "time_projection.1.weight", |
|
|
"patch_embedding.bias": "patch_embedding.bias", |
|
|
"patch_embedding.weight": "patch_embedding.weight", |
|
|
"scale_shift_table": "head.modulation", |
|
|
"proj_out.bias": "head.head.bias", |
|
|
"proj_out.weight": "head.head.weight", |
|
|
} |
|
|
state_dict_ = {} |
|
|
for name, param in state_dict.items(): |
|
|
if name in rename_dict: |
|
|
state_dict_[rename_dict[name]] = param |
|
|
else: |
|
|
name_ = ".".join(name.split(".")[:1] + ["0"] + name.split(".")[2:]) |
|
|
if name_ in rename_dict: |
|
|
name_ = rename_dict[name_] |
|
|
name_ = ".".join(name_.split(".")[:1] + [name.split(".")[1]] + name_.split(".")[2:]) |
|
|
state_dict_[name_] = param |
|
|
if hash_state_dict_keys(state_dict) == "cb104773c6c2cb6df4f9529ad5c60d0b": |
|
|
config = { |
|
|
"model_type": "t2v", |
|
|
"patch_size": (1, 2, 2), |
|
|
"text_len": 512, |
|
|
"in_dim": 16, |
|
|
"dim": 5120, |
|
|
"ffn_dim": 13824, |
|
|
"freq_dim": 256, |
|
|
"text_dim": 4096, |
|
|
"out_dim": 16, |
|
|
"num_heads": 40, |
|
|
"num_layers": 40, |
|
|
"window_size": (-1, -1), |
|
|
"qk_norm": True, |
|
|
"cross_attn_norm": True, |
|
|
"eps": 1e-6, |
|
|
} |
|
|
else: |
|
|
config = {} |
|
|
return state_dict_, config |
|
|
|
|
|
def from_civitai(self, state_dict): |
|
|
if hash_state_dict_keys(state_dict) == "9269f8db9040a9d860eaca435be61814": |
|
|
config = { |
|
|
"has_image_input": False, |
|
|
"patch_size": [1, 2, 2], |
|
|
"in_dim": 16, |
|
|
"dim": 1536, |
|
|
"ffn_dim": 8960, |
|
|
"freq_dim": 256, |
|
|
"text_dim": 4096, |
|
|
"out_dim": 16, |
|
|
"num_heads": 12, |
|
|
"num_layers": 30, |
|
|
"eps": 1e-6 |
|
|
} |
|
|
elif hash_state_dict_keys(state_dict) == "aafcfd9672c3a2456dc46e1cb6e52c70": |
|
|
config = { |
|
|
"has_image_input": False, |
|
|
"patch_size": [1, 2, 2], |
|
|
"in_dim": 16, |
|
|
"dim": 5120, |
|
|
"ffn_dim": 13824, |
|
|
"freq_dim": 256, |
|
|
"text_dim": 4096, |
|
|
"out_dim": 16, |
|
|
"num_heads": 40, |
|
|
"num_layers": 40, |
|
|
"eps": 1e-6 |
|
|
} |
|
|
elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e": |
|
|
config = { |
|
|
"has_image_input": True, |
|
|
"patch_size": [1, 2, 2], |
|
|
"in_dim": 36, |
|
|
"dim": 5120, |
|
|
"ffn_dim": 13824, |
|
|
"freq_dim": 256, |
|
|
"text_dim": 4096, |
|
|
"out_dim": 16, |
|
|
"num_heads": 40, |
|
|
"num_layers": 40, |
|
|
"eps": 1e-6 |
|
|
} |
|
|
else: |
|
|
config = {} |
|
|
return state_dict, config |
|
|
|