Update README.md
Browse files
README.md
CHANGED
@@ -1,42 +1 @@
|
|
1 |
-
|
2 |
-
license: apache-2.0
|
3 |
-
tags:
|
4 |
-
- trl
|
5 |
-
- transformers
|
6 |
-
- reinforcement-learning
|
7 |
-
---
|
8 |
-
|
9 |
-
# TRL Model
|
10 |
-
|
11 |
-
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
|
12 |
-
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
|
13 |
-
|
14 |
-
## Usage
|
15 |
-
|
16 |
-
To use this model for inference, first install the TRL library:
|
17 |
-
|
18 |
-
```bash
|
19 |
-
python -m pip install trl
|
20 |
-
```
|
21 |
-
|
22 |
-
You can then generate text as follows:
|
23 |
-
|
24 |
-
```python
|
25 |
-
from transformers import pipeline
|
26 |
-
|
27 |
-
generator = pipeline("text-generation", model="Evan-Lin//tmp/tmpuz01z58o/Evan-Lin/Bart-Yelp-rougelastbatch-attractive1-keywordmax1-encoderrep0.5-length0-rep0.5")
|
28 |
-
outputs = generator("Hello, my llama is cute")
|
29 |
-
```
|
30 |
-
|
31 |
-
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
|
32 |
-
|
33 |
-
```python
|
34 |
-
from transformers import AutoTokenizer
|
35 |
-
from trl import AutoModelForCausalLMWithValueHead
|
36 |
-
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmpuz01z58o/Evan-Lin/Bart-Yelp-rougelastbatch-attractive1-keywordmax1-encoderrep0.5-length0-rep0.5")
|
38 |
-
model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmpuz01z58o/Evan-Lin/Bart-Yelp-rougelastbatch-attractive1-keywordmax1-encoderrep0.5-length0-rep0.5")
|
39 |
-
|
40 |
-
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
41 |
-
outputs = model(**inputs, labels=inputs["input_ids"])
|
42 |
-
```
|
|
|
1 |
+
生很長的句子?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|