linzheng commited on
Commit
010d000
·
verified ·
1 Parent(s): 2c68938

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -25
README.md CHANGED
@@ -8,30 +8,34 @@ license: apache-2.0
8
  ## Model Resources
9
 
10
  - **Repository:** https://github.com/openevabyte/evabyte
11
- - **Blog:** https://hkunlp.github.io/blog/2024/evabyte
12
  - **Paper:** Coming soon
13
 
14
  ## Model Details
15
 
16
- EvaByte is trained using the SambaNova SN30 RDU system with a batch size of 8M bytes and 32K context length. The training process consists of 3 phases: after pre-training on 1.2T bytes (yielding **EvaByte-6.5B-Phase1**), two independent annealing runs (100B and 200B bytes respectively) are conducted with learning rate linearly decayed from 1e-4 to 0. The resulting checkpoints are merged via model soup (**EvaByte-6.5B**), which then undergoes supervised fine-tuning (**EvaByte-6.5B-SFT**).
17
 
18
  | Stage | Model |
19
  |:----- |:-----|
20
- | Base (before annealing) | [EvaByte-6.5B-Phase1](https://huggingface.co/evabyte/EvaByte-6.5B-Phase1) |
21
- | Base | [EvaByte-6.5B](https://huggingface.co/evabyte/EvaByte-6.5B) |
22
- | SFT | [EvaByte-6.5B-SFT](https://huggingface.co/evabyte/EvaByte-6.5B-SFT) <-- you are here |
23
 
24
 
25
  ## Usage
 
 
 
26
 
27
- Please note that we do not train the model with a specific system prompt during SFT.
28
  ```python
29
  from transformers import AutoTokenizer, AutoModelForCausalLM
30
  import torch
31
 
32
- tokenizer = AutoTokenizer.from_pretrained("evabyte/EvaByte-6.5B-SFT", trust_remote_code=True)
33
- model = AutoModelForCausalLM.from_pretrained("evabyte/EvaByte-6.5B-SFT", torch_dtype=torch.bfloat16, trust_remote_code=True).eval().to("cuda")
 
34
 
 
35
  messages = [
36
  {"role": "user", "content": "Write me an English pangram."}
37
  ]
@@ -41,12 +45,12 @@ input_ids = tokenizer.apply_chat_template(
41
  return_tensors="pt",
42
  ).to("cuda")
43
 
44
- # byte-by-byte generation
45
  generation_output = model.generate(
46
  input_ids=input_ids,
47
  max_new_tokens=256
48
  )
49
- # alternatively, use multibyte generation
50
  generation_output = model.multi_byte_generate(
51
  input_ids=input_ids,
52
  max_new_tokens=256
@@ -58,10 +62,15 @@ response = tokenizer.decode(
58
  clean_up_tokenization_spaces=False
59
  )
60
  print(response)
 
 
61
  ```
62
- We support two modes of generation:
63
- - `model.generate()`: When invoked, the model will generate one byte at a time. This is the default mode of generation with the Huggingface interface.
64
- - `model.multi_byte_generate()`: generate multiple bytes in a single step, adapted from the implementation of [Medusa](https://github.com/FasterDecoding/Medusa). This will be much faster than above and usually yields the same result under the setting of greedy decoding. `model.multi_byte_generate()` supports a subset of arguments in `model.generate()`:
 
 
 
65
  - `input_ids`: the input byte ids.
66
  - `temperature`: the temperature for sampling.
67
  - `max_length`: the maximum length of the generated sequence.
@@ -70,29 +79,27 @@ We support two modes of generation:
70
  - `top_p`: the top-p parameter for sampling.
71
  - `do_sample`: greedy decoding or sampling.
72
 
73
- NOTE:
74
- - `device_map="auto"` is not supported for > 2 GPUs
75
- - Decoding only supports batch size of 1 with `attention_mask=None` for now.
76
- - Only supports `torch_dtype=torch.bfloat16` for now.
 
77
 
78
 
79
  ## Bias, Risks, and Limitations
80
- `EvaByte-6.5B-SFT` serves primarily as a demonstration to showcase how the base model of EvaByte can be effectively fine-tuned for chat and instruction-following capabilities. While it shows improved conversational abilities, users should note that it has not undergone specific alignment or incorporated any moderation mechanisms. Like other instruction-tuned models without safety filtering, it can still generate potentially harmful, inappropriate, or factually incorrect content.
81
 
82
  ## Evaluation
83
 
84
- For detailed evaluation results, please refer to the [blog](https://hkunlp.github.io/blog/2024/evabyte).
85
 
86
 
87
  ## Citation
88
-
89
- **BibTeX:**
90
-
91
- ```
92
  @misc{evabyte,
93
  title = {EvaByte: Efficient Byte-level Language Models at Scale},
94
- url = {},
95
- author = {Lin Zheng and Xueliang Zhao and Guangtao Wang and Chen Wu and David Dong and Angela Wang and Mingran Wang and Haige Bo and Tony Zhang and Changran Hu and Urmish Thakker and Lingpeng Kong},
96
  year = {2025}
97
  }
98
  ```
 
8
  ## Model Resources
9
 
10
  - **Repository:** https://github.com/openevabyte/evabyte
11
+ - **Blog:** https://hkunlp.github.io/blog/2025/evabyte
12
  - **Paper:** Coming soon
13
 
14
  ## Model Details
15
 
16
+ EvaByte is trained using the performant SambaNova SN30 RDU system with a batch size of 8M bytes and 32K context length. The training process consists of 3 phases: after pre-training on 1.2T bytes (yielding **EvaByte-Phase1**), two independent annealing runs (100B and 200B bytes respectively) are conducted with learning rate linearly decayed from 1e-4 to 0. The resulting checkpoints are merged via model soup (**EvaByte**), which then undergoes supervised fine-tuning (**EvaByte-SFT**).
17
 
18
  | Stage | Model |
19
  |:----- |:-----|
20
+ | Base (before annealing) | [EvaByte-Phase1](https://huggingface.co/evabyte/EvaByte-Phase1) |
21
+ | Base | [EvaByte](https://huggingface.co/evabyte/EvaByte) |
22
+ | SFT | [EvaByte-SFT](https://huggingface.co/evabyte/EvaByte-SFT) <-- you are here |
23
 
24
 
25
  ## Usage
26
+ **Note:** Make sure to set `trust_remote_code=True` when loading the model (or tokenizer), as our implementation includes custom code.
27
+
28
+ Below is an example of using **EvaByte-6.5B-SFT** for chat or instruction-following tasks. The model is trained with the [Llama-3 chat format](https://github.com/meta-llama/llama3/blob/main/llama/tokenizer.py#L202), and we do not use a specific system prompt during supervised fine-tuning.
29
 
 
30
  ```python
31
  from transformers import AutoTokenizer, AutoModelForCausalLM
32
  import torch
33
 
34
+ # Load tokenizer and model
35
+ tokenizer = AutoTokenizer.from_pretrained("evabyte/EvaByte-SFT", trust_remote_code=True)
36
+ model = AutoModelForCausalLM.from_pretrained("evabyte/EvaByte-SFT", torch_dtype=torch.bfloat16, trust_remote_code=True).eval().to("cuda")
37
 
38
+ # Prepare input messages
39
  messages = [
40
  {"role": "user", "content": "Write me an English pangram."}
41
  ]
 
45
  return_tensors="pt",
46
  ).to("cuda")
47
 
48
+ # Byte-by-byte generation (default)
49
  generation_output = model.generate(
50
  input_ids=input_ids,
51
  max_new_tokens=256
52
  )
53
+ # Multibyte generation (faster alternative)
54
  generation_output = model.multi_byte_generate(
55
  input_ids=input_ids,
56
  max_new_tokens=256
 
62
  clean_up_tokenization_spaces=False
63
  )
64
  print(response)
65
+ # Sample output:
66
+ # An English pangram is a sentence that uses every letter of the alphabet at least once. Here's a simple pangram:\n\n"The quick brown fox jumps over the lazy dog."<|eot_id|>
67
  ```
68
+
69
+ ### ⚙️ Generation Modes
70
+
71
+ EvaByte supports two generation interfaces:
72
+ - `model.generate()`: The default generation method compatible with Huggingface `transformers` library. This approach generates one byte at a time and might be slow.
73
+ - `model.multi_byte_generate()`: A faster alternative that generates multiple bytes per step and usually yields the same result as `model.generate()` under greedy decoding, with the implementation adapted from [Medusa](https://github.com/FasterDecoding/Medusa). `model.multi_byte_generate()` supports a subset of arguments in `model.generate()`:
74
  - `input_ids`: the input byte ids.
75
  - `temperature`: the temperature for sampling.
76
  - `max_length`: the maximum length of the generated sequence.
 
79
  - `top_p`: the top-p parameter for sampling.
80
  - `do_sample`: greedy decoding or sampling.
81
 
82
+ **Notes and Limitations:**
83
+ - `device_map="auto"` is not supported for >2 GPUs.
84
+ - Only batch size of 1 (with `attention_mask=None`) is supported for decoding.
85
+ - `torch_dtype=torch.bfloat16` is required.
86
+ - The multibyte generation `model.multi_byte_generate()` might return extra bytes after the end-of-sequence sentinel, due to the nature of the multibyte decoding. Manual truncation or cleaning may be needed.
87
 
88
 
89
  ## Bias, Risks, and Limitations
90
+ `EvaByte-SFT` serves primarily as a demonstration to showcase how the base model of EvaByte can be effectively fine-tuned for chat and instruction-following capabilities. While it shows improved conversational abilities, users should note that it has not undergone specific alignment or incorporated any moderation mechanisms. Like other instruction-tuned models without safety filtering, it can still generate potentially harmful, inappropriate, or factually incorrect content.
91
 
92
  ## Evaluation
93
 
94
+ For detailed evaluation results, please refer to the [blog post](https://hkunlp.github.io/blog/2025/evabyte).
95
 
96
 
97
  ## Citation
98
+ ```bibtex
 
 
 
99
  @misc{evabyte,
100
  title = {EvaByte: Efficient Byte-level Language Models at Scale},
101
+ url = {https://hkunlp.github.io/blog/2025/evabyte},
102
+ author = {Lin Zheng and Xueliang Zhao and Guangtao Wang and Chen Wu and David Dong and Angela Wang and Mingran Wang and Yun Du and Haige Bo and Tony Zhang and Changran Hu and Urmish Thakker and Lingpeng Kong},
103
  year = {2025}
104
  }
105
  ```