EvaByte-Phase1 / eva.py
linzheng's picture
Update model and kernels for training support
4a280e3 verified
raw
history blame
18.7 kB
from typing import Dict, Optional, Tuple, List, Any, Union
import torch
from torch import nn
import torch.nn.functional as F
from .eva_agg_kernel import eva_agg_func_triton
from .eva_prep_kv_kernel import eva_prep_kv_func_triton
try:
import triton
USE_TRITON_IMPL = True
except ImportError:
USE_TRITON_IMPL = False
raise ImportError("Triton is not installed. Please install it by running `pip install triton`.")
def rotate_half(x: torch.Tensor) -> torch.Tensor:
"""
Rotates half the hidden dims (last dim) of the input.
Args:
x: Rotary embedded tensor
Return:
Tensor with half of last dim negated and rotated to the front.
"""
x1, x2 = x.split(x.shape[-1] // 2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor,
position_ids: torch.Tensor) -> torch.Tensor:
"""
Apply rotary embedding (cos, sin) to the query and key tensor on the sequence dimension.
The legends for dimensions are defined as:
num_heads: number of attention heads
current_seq_len: the current batch's sequence length, should be either 1 or max_seq_len
max_seq_len: the static sequence length, different from current_seq_len in cached inference case where it is always
maximum lenghth, e.g. the length of static sequence length of KV cache
Args:
q: Query tensor, of size (batch_size, num_heads, current_seq_len, head_dim)
k: Key tensor, of size (batch_size, num_key_value_heads, current_seq_len, head_dim)
cos: Cosine base of rotary embedding, of size (max_seq_len, head_dim)
sin: Sine base of rotary embedding, of size (max_seq_len, head_dim)
position_ids: The position indices of the tokens corresponding to the query and key tensors. It has a size of
(batch_size, current_seq_len).
Returns:
Embedded query and key tensor of same size as input.
"""
bs, nheads, cur_seq_len, head_dim = q.shape
assert len(
k.shape) == 4, f"k should be of shape (batch_size, num_heads, current_seq_len, head_dim), got {k.shape} instead"
assert k.shape[0] == bs, f"k has a different batch_size {k.shape[0]} compared to q {bs}"
assert list(k.shape[2:]) == [cur_seq_len,
head_dim], f"k has different current_seq_len and/or head_dim compared to q"
assert cos.shape[3] == head_dim, f"cos should have dim of head dim {head_dim}, got {cos.shape[3]} instead"
assert list(position_ids.shape) in [[bs, cur_seq_len], [1, cur_seq_len]],\
f"position_ids should be of shape {[bs, cur_seq_len]} or {[1, cur_seq_len]}, got {position_ids.shape} instead"
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class EvaAttention(nn.Module):
"""
Causal EVA for language modeling.
"""
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.head_dim_scaling = self.head_dim ** -0.5
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.window_size = config.window_size
self.num_chunks = config.num_chunks
self.chunk_size = config.chunk_size
if self.chunk_size is not None:
assert self.window_size >= self.chunk_size and self.window_size % self.chunk_size == 0
# chunk_size overrides the number of landmarks
self.num_chunks = None
self.chunks_per_window = int(self.window_size // self.chunk_size)
self.adaptive_phi = nn.Parameter(
torch.randn(
1,
self.num_heads,
1,
1,
self.head_dim
).clamp(-1., 1.) * self.head_dim_scaling
)
self.adaptive_mu_k = nn.Parameter(
torch.randn(
1,
self.num_heads,
1,
1,
self.head_dim
).clamp(-1., 1.) * self.head_dim_scaling
)
def _triton_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cos: Optional[torch.Tensor] = None,
sin: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
assert not output_attentions
bsz, q_len, _ = hidden_states.size()
if use_cache:
if past_key_value is None:
raise ValueError
assert isinstance(attention_mask, tuple)
# infer the model's running mode
is_prefilling = use_cache and past_key_value.get_seq_length(self.layer_idx) == 0
is_decoding = use_cache and past_key_value.get_seq_length(self.layer_idx) > 0
if is_prefilling:
assert len(attention_mask) == 2
window_mask, intra_chunk_mask = attention_mask
chunk_mask = None
elif is_decoding:
assert len(attention_mask) == 3
window_mask, intra_chunk_mask, chunk_mask = attention_mask
else:
if attention_mask is not None:
assert isinstance(attention_mask, tuple) and len(attention_mask) == 3
window_mask, chunk_mask, intra_chunk_mask = attention_mask
else:
window_mask, chunk_mask, intra_chunk_mask = None, None, None
############################################
# compute q, k, v from hidden states
############################################
# [b, h, q_len, d]
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
if use_cache:
past_key_value.update_past_len(q.shape[-2], self.layer_idx)
############################################
# apply rotary positional embeddings to q, k
############################################
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
############################################
# update and get cached singleton tokens
# update and cache k and v for calculating chunk-level RFAs
############################################
if use_cache:
s_k, s_v, dump_k, dump_v = past_key_value.update_singletons_and_chunks(
k,
v,
self.layer_idx,
self.window_size,
)
else:
s_k, s_v = k, v
dump_k, dump_v = k, v
if use_cache:
singleton_mask, dump_rf_mask = past_key_value.update_mask(
s_mask=window_mask,
rf_mask=intra_chunk_mask,
layer_idx=self.layer_idx,
window_size=self.window_size,
)
else:
singleton_mask = window_mask
dump_rf_mask = intra_chunk_mask
if dump_k is not None and dump_v is not None:
# 1. in prefilling, the input shape is
# dump_k/dump_v: [b, h, n, d]
# rfa_k/rfa_v: [b, h, n // c, d]
# 2. in decoding, the input shape is
# k/v: [b, h, w, d]
# rfa_k/rfa_v: [b, h, w//c, d]
# 3. in forward inference; the seq_len is already divisible
rfa_k, rfa_v = eva_prep_kv_func_triton(
dump_k, dump_v,
self.adaptive_mu_k, self.adaptive_phi,
dump_rf_mask, self.head_dim_scaling, self.chunk_size
)
# rfa_mask = get_rfa_chunk_mask(dump_rf_mask)
if use_cache:
rfa_k, rfa_v = past_key_value.update_chunk_rfas(
rfa_k, rfa_v, self.layer_idx
)
elif use_cache:
# if there are not enough elements within the last chunk,
# we will only use the cached chunk-level RFAs
rfa_k, rfa_v = past_key_value.get_chunk_rfas(self.layer_idx)
else:
rfa_k, rfa_v = None, None
############################################
# compute the full attention output
############################################
if is_prefilling:
# prefilling
# 1. in prefilling, the input shape is
# q: [b, h, n, d]
# k/v: [b, h, n, d]
# rfa_k/rfa_v: [b, h, n // c, d]
attn_output = eva_agg_func_triton(
q, s_k, s_v,
rfa_k, rfa_v,
singleton_mask, chunk_mask,
self.head_dim_scaling, self.window_size, self.chunks_per_window
)
elif is_decoding:
# 2. in decoding, the input shape is
# q: [b, h, 1, d] or [b, h, z, d] (for multi-byte prediction)
# k/v: [b, h, 1 + s, d]
# rfa_k/rfa_v: [b, h, n // c, d]
if rfa_k is not None and rfa_v is not None:
# we only take the chunk-level RFAs not in the current window
seen_seq_len = past_key_value.get_seq_length(self.layer_idx)
if seen_seq_len <= self.window_size:
agg_k = s_k
agg_v = s_v
attn_mask = singleton_mask
else:
# NOTE: we already updated the cache so the length now
# includes the current token
# we subtract 1 from seen_seq_len because we want
# if seen_seq_len = 2048 -> num_windows_seen_so_far = 0
# if seen_seq_len = 4096 -> num_windows_seen_so_far = 1
# if seen_seq_len = 4097 -> num_windows_seen_so_far = 2
# NOTE the cat order should be taken care of;
# should align with the order based on which
# the attention mask is constructed
num_windows_seen_so_far = (seen_seq_len - 1) // self.window_size
agg_k = torch.cat([s_k, rfa_k[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
agg_v = torch.cat([s_v, rfa_v[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
if singleton_mask is not None:
assert chunk_mask is not None
attn_mask = torch.cat([singleton_mask, chunk_mask], dim=-1)
else:
attn_mask = singleton_mask
else:
agg_k = s_k
agg_v = s_v
attn_mask = singleton_mask
attn_output = F.scaled_dot_product_attention(
q, agg_k, agg_v,
attn_mask=attn_mask,
is_causal=False,
dropout_p=0.0,
scale=self.head_dim_scaling
)
else:
# 3. in single-forward inference
attn_output = eva_agg_func_triton(
q, s_k, s_v,
rfa_k, rfa_v,
singleton_mask, chunk_mask,
self.head_dim_scaling, self.window_size, self.chunks_per_window
)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
attn_weights = None
return attn_output, attn_weights, past_key_value
def _multibyte_decoding_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cos: Optional[torch.Tensor] = None,
sin: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# during multi-byte forwarding, we only read caches and do not update them
assert not output_attentions
bsz, q_len, _ = hidden_states.size()
if use_cache and past_key_value is None:
raise ValueError
assert USE_TRITON_IMPL
assert isinstance(attention_mask, torch.Tensor) and attention_mask.dtype == torch.bool
assert use_cache and past_key_value.get_seq_length(self.layer_idx) > 0
############################################
# compute q, k, v from hidden states
############################################
# [b, h, q_len, d]
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
############################################
# apply rotary positional embeddings to q, k
############################################
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
############################################
# update and get cached singleton tokens
############################################
input_len = k.shape[-2]
window_pos = past_key_value.past_window_pos[self.layer_idx]
new_window_pos = window_pos + input_len
past_key_value.past_window_k[self.layer_idx][:, :, window_pos : new_window_pos, :] = k
past_key_value.past_window_v[self.layer_idx][:, :, window_pos : new_window_pos, :] = v
s_k = past_key_value.past_window_k[self.layer_idx][:, :, : new_window_pos, :]
s_v = past_key_value.past_window_v[self.layer_idx][:, :, : new_window_pos, :]
rfa_k, rfa_v = past_key_value.get_chunk_rfas(self.layer_idx)
############################################
# compute the full attention output
############################################
# 2. in decoding, the input shape is
# q: [b, h, 1, d] or [b, h, z, d] (for multi-byte prediction)
# k/v: [b, h, 1 + s, d]
# rfa_k/rfa_v: [b, h, n // c, d]
if rfa_k is not None and rfa_v is not None:
# NOTE the cat order should be taken care of;
# should align with the order based on which
# the attention mask is constructed
# agg_k = torch.cat([s_k, rfa_k], dim=-2)
# agg_v = torch.cat([s_v, rfa_v], dim=-2)
agg_k = torch.cat([rfa_k, s_k], dim=-2)
agg_v = torch.cat([rfa_v, s_v], dim=-2)
else:
agg_k = s_k
agg_v = s_v
attn_output = F.scaled_dot_product_attention(
q, agg_k, agg_v,
attn_mask=attention_mask,
is_causal=False,
dropout_p=0.0,
scale=self.head_dim_scaling
)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
attn_weights = None
return attn_output, attn_weights, past_key_value
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cos: Optional[torch.Tensor] = None,
sin: Optional[torch.Tensor] = None,
multibyte_decoding: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
assert not output_attentions
if use_cache and past_key_value is None:
raise ValueError
assert USE_TRITON_IMPL
if use_cache and multibyte_decoding:
return self._multibyte_decoding_forward(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cos=cos,
sin=sin,
)
else:
return self._triton_forward(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cos=cos,
sin=sin,
)