Eugene-Bond
commited on
Commit
·
a792bbc
1
Parent(s):
db2bc0a
First commit of the model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 268.72 +/- 15.64
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb60c82e710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb60c82e7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb60c82e830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb60c82e8c0>", "_build": "<function ActorCriticPolicy._build at 0x7fb60c82e950>", "forward": "<function ActorCriticPolicy.forward at 0x7fb60c82e9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb60c82ea70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb60c82eb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb60c82eb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb60c82ec20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb60c82ecb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb60c87d630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1008000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652065019.592064, "learning_rate": 0.005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz90euFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNyFD2E5yg/xpmcPfpnJL8R/688q3IPPQAAAAAAAAAArcYFviwbrj7QJ6s8Nd3Rvte6M72LTBe9AAAAAAAAAADa+S8+XYUCPip5jr4CkrO++yNEvTpxB74AAAAAAAAAAJqZ9LydGp0/mhJrvpNaTb9CAmG97IKdvQAAAAAAAAAAM/1tPCh5jz19x6Q8NmtFvjoRBDzM2TE9AAAAAAAAAADA4C6+NG+KvJuT7jpkBCs5YfL4PVOCH7oAAIA/AACAPxqVIT7+eag/L2cwP9KP8L4+CdQ97ac+PgAAAAAAAAAAQLAhvmyF9rsvhwa78yi1uGc9UT1g1yE6AACAPwAAgD8aVUC9FBiGukrHT7Wx/E+wu/KeuiovUjQAAIA/AACAPzaTgz6gZ8A+IQSEvtcbsr5H1XE+E2VrvgAAAAAAAAAAZlofvXGdVLtWiEo9d3vDvEfSC7y2zS29AACAPwAAgD9AhUW+kqgXP8W7GL3vvOa+OQpwvpmIsT0AAAAAAAAAAKaiv72klh88tmhxPh0ANL5RhuM9Sou7PAAAAAAAAIA/E4NDvqv4GT8bKue8i8fxvo6nIL5DRt49AAAAAAAAAACaxsW81k4ZPSpooz0EMFm+dQaAPDw9qzwAAAAAAAAAAIYgFD4ZJUg+kc0zvqWnsr6iuIi5QdmTvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008000000000000007, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfjuJCH+zcECUhpRSlIwBbJRL34wBdJRHQJ/mGPLgXM11fZQoaAZoCWgPQwjgufdwSdtwQJSGlFKUaBVLzWgWR0Cf5khK15SndX2UKGgGaAloD0MIHvtZLMVxcUCUhpRSlGgVS9xoFkdAn+ZtcjZ+QXV9lChoBmgJaA9DCIVE2saf2FFAlIaUUpRoFUuVaBZHQJ/njwUg0TF1fZQoaAZoCWgPQwjTF0LOeyByQJSGlFKUaBVL7mgWR0Cf53a6BiCrdX2UKGgGaAloD0MI1qnyPeMpcECUhpRSlGgVS81oFkdAn+gI2XLNfXV9lChoBmgJaA9DCHi3skQnNHFAlIaUUpRoFUuzaBZHQJ/pCDzyz5Z1fZQoaAZoCWgPQwhOYhBY+dNwQJSGlFKUaBVL52gWR0Cf6OEB8x9HdX2UKGgGaAloD0MIeqpDboaYcUCUhpRSlGgVS6doFkdAn+jpcHGCI3V9lChoBmgJaA9DCNXpQNYTMHNAlIaUUpRoFUv+aBZHQJ/px53Tuv51fZQoaAZoCWgPQwi5/l2fedFxQJSGlFKUaBVL3WgWR0Cf6dZXMhX9dX2UKGgGaAloD0MIATJ07CB4bUCUhpRSlGgVS8BoFkdAn+qViz9jw3V9lChoBmgJaA9DCCXnxB5a9HFAlIaUUpRoFUvpaBZHQJ/rLGp++dt1fZQoaAZoCWgPQwh9smK4+kJxQJSGlFKUaBVL2WgWR0Cf7JANXo1UdX2UKGgGaAloD0MIdcsO8Q+8YUCUhpRSlGgVTegDaBZHQJ/syj4593N1fZQoaAZoCWgPQwj26053Hj1yQJSGlFKUaBVLymgWR0Cf7Qu5BkZrdX2UKGgGaAloD0MINZpcjAGHcECUhpRSlGgVS8poFkdAn+05Yoy9EnV9lChoBmgJaA9DCGHdeHckAHFAlIaUUpRoFUvEaBZHQJ/tJLdvbXZ1fZQoaAZoCWgPQwiwrDQpBbhwQJSGlFKUaBVLxWgWR0Cf7hDAJswddX2UKGgGaAloD0MIdT3RdaEvcECUhpRSlGgVS8RoFkdAn+6SVSn+AHV9lChoBmgJaA9DCMct5ufGPnJAlIaUUpRoFU0EAWgWR0Cf7rwPiDNAdX2UKGgGaAloD0MIzJasivDJcUCUhpRSlGgVS99oFkdAn+75LIxQBXV9lChoBmgJaA9DCKTeUzntEnJAlIaUUpRoFUvAaBZHQJ/vXxc3VCp1fZQoaAZoCWgPQwgp0Cfy5L9yQJSGlFKUaBVLxWgWR0Cf72idJ8OTdX2UKGgGaAloD0MIxCEbSJcybkCUhpRSlGgVS6xoFkdAn++BoysS03V9lChoBmgJaA9DCBea6zSSjHFAlIaUUpRoFUvTaBZHQJ/vwwSJ0nx1fZQoaAZoCWgPQwiduvJZXpdxQJSGlFKUaBVLz2gWR0Cf8HFGoaUBdX2UKGgGaAloD0MIFeEmo0rBcUCUhpRSlGgVS8hoFkdAn/DrkbPyCnV9lChoBmgJaA9DCLCNeLLbIHFAlIaUUpRoFUvIaBZHQJ/xeKWLP2R1fZQoaAZoCWgPQwisyOiAZHZxQJSGlFKUaBVLqWgWR0Cf8eX5WRzSdX2UKGgGaAloD0MIC7d8JKXCc0CUhpRSlGgVS7hoFkdAn/LCdOIqLHV9lChoBmgJaA9DCGEcXDomwXFAlIaUUpRoFUvhaBZHQJ/zgR28qWl1fZQoaAZoCWgPQwiCdLFpZWxxQJSGlFKUaBVLrGgWR0Cf9Aguyu6mdX2UKGgGaAloD0MIpriq7PuOcECUhpRSlGgVS+toFkdAn/RIcm0E5nV9lChoBmgJaA9DCE4JiEm4N3BAlIaUUpRoFUugaBZHQJ/0bfuTibV1fZQoaAZoCWgPQwjXoC+9vaVxQJSGlFKUaBVL4WgWR0Cf9QZbY9PldX2UKGgGaAloD0MInFCIgEOYcUCUhpRSlGgVS7doFkdAn/UKO5rgwXV9lChoBmgJaA9DCJOKxtpf/nFAlIaUUpRoFUvuaBZHQJ/18DDCP6t1fZQoaAZoCWgPQwhhcM0d/WpzQJSGlFKUaBVL7GgWR0Cf9kvRqoIfdX2UKGgGaAloD0MI7xzKUFVec0CUhpRSlGgVTSYBaBZHQJ/2PijtXxR1fZQoaAZoCWgPQwgMdy6MNFZyQJSGlFKUaBVLwGgWR0Cf9n9HMEA6dX2UKGgGaAloD0MIz79d9iv8c0CUhpRSlGgVS/JoFkdAn/bdXHR1HXV9lChoBmgJaA9DCCNpN/oYz3FAlIaUUpRoFUvhaBZHQJ/2wPAfuCx1fZQoaAZoCWgPQwiKITmZOOVuQJSGlFKUaBVLxWgWR0Cf96ieNDMNdX2UKGgGaAloD0MIjQkxl5RZcUCUhpRSlGgVS+RoFkdAn/gD+WGATnV9lChoBmgJaA9DCMu76gHzQG9AlIaUUpRoFUvZaBZHQJ/4m42CNCJ1fZQoaAZoCWgPQwgt0O6QYoxuQJSGlFKUaBVLy2gWR0Cf+QbmEGqxdX2UKGgGaAloD0MIh/nyAuw4bUCUhpRSlGgVS8NoFkdAn/pTJuEVWXV9lChoBmgJaA9DCA5N2ekHNHFAlIaUUpRoFUvXaBZHQJ/6kM6RyOt1fZQoaAZoCWgPQwjCiejXloBwQJSGlFKUaBVL1GgWR0Cf+rYHPeHjdX2UKGgGaAloD0MIKVlOQumnbkCUhpRSlGgVS8toFkdAn/sxnzxwynV9lChoBmgJaA9DCCFAho7du3FAlIaUUpRoFUvHaBZHQJ/8AM+eOGV1fZQoaAZoCWgPQwjhehSuR7tvQJSGlFKUaBVLtWgWR0Cf/F4CZF5OdX2UKGgGaAloD0MIEVMiid76b0CUhpRSlGgVS/FoFkdAn/xqoddVvXV9lChoBmgJaA9DCMNEgxT8cnBAlIaUUpRoFUvTaBZHQJ/8rowEhaF1fZQoaAZoCWgPQwgj3c8pSKlzQJSGlFKUaBVLxmgWR0Cf/NM6RyOrdX2UKGgGaAloD0MILBA9KVOWcUCUhpRSlGgVS9poFkdAn/0qaG5+Y3V9lChoBmgJaA9DCKD7cma7w3JAlIaUUpRoFUvuaBZHQJ/9l2X9itt1fZQoaAZoCWgPQwiv0t11to9xQJSGlFKUaBVLx2gWR0Cf/jhFmWdFdX2UKGgGaAloD0MI3PEmv8WCcECUhpRSlGgVS6poFkdAn/5lXA/LT3V9lChoBmgJaA9DCH3MBwR6W3BAlIaUUpRoFUvIaBZHQJ/+5xLkCFN1fZQoaAZoCWgPQwhZEwt8xURyQJSGlFKUaBVNiAFoFkdAn/+6F7D2rXV9lChoBmgJaA9DCDQRNjw9QHFAlIaUUpRoFUvJaBZHQKAAZz5oGpx1fZQoaAZoCWgPQwg+JlKaTRpyQJSGlFKUaBVLz2gWR0CgALuiN83NdX2UKGgGaAloD0MIlbVN8bj5b0CUhpRSlGgVS6poFkdAoADIdhiLEXV9lChoBmgJaA9DCKG6ufhb7G1AlIaUUpRoFUvKaBZHQKAA5s8gZCR1fZQoaAZoCWgPQwjXMa64+K1wQJSGlFKUaBVLoWgWR0CgAQvD50r9dX2UKGgGaAloD0MIRKhSs0c+ckCUhpRSlGgVS6xoFkdAoAEn7tReknV9lChoBmgJaA9DCAclzLQ94nBAlIaUUpRoFUu9aBZHQKABRtNzr/t1fZQoaAZoCWgPQwj8prBSQf5vQJSGlFKUaBVLumgWR0CgAUDX4CZGdX2UKGgGaAloD0MIKSMuAM30cECUhpRSlGgVS8FoFkdAoAG8LjPv8nV9lChoBmgJaA9DCGyVYHH4qHBAlIaUUpRoFUvYaBZHQKACYN3GGVR1fZQoaAZoCWgPQwgAGxAhruxxQJSGlFKUaBVLxWgWR0CgAmetKZlWdX2UKGgGaAloD0MIWp4Hd+fabkCUhpRSlGgVS8NoFkdAoAMtC1JDmnV9lChoBmgJaA9DCAXfNH22GnNAlIaUUpRoFUvmaBZHQKADXvXsgMd1fZQoaAZoCWgPQwhYHM78KrtxQJSGlFKUaBVL/mgWR0CgA4dBa9sadX2UKGgGaAloD0MILNMvEa9BcUCUhpRSlGgVS7BoFkdAoAPiyD7Ik3V9lChoBmgJaA9DCIczv5qDzXBAlIaUUpRoFUusaBZHQKAEH5Sm65J1fZQoaAZoCWgPQwgA5e/eUT9yQJSGlFKUaBVL0WgWR0CgBHCFK02MdX2UKGgGaAloD0MIVkj5STVbc0CUhpRSlGgVS8poFkdAoASBqEeyRnV9lChoBmgJaA9DCMHicOYXT3NAlIaUUpRoFUv1aBZHQKAExEkSmIl1fZQoaAZoCWgPQwhfDVAaKmhxQJSGlFKUaBVL2GgWR0CgBQ1MmF8HdX2UKGgGaAloD0MI9RQ5RFxkcUCUhpRSlGgVS+poFkdAoAWA+GGmDXV9lChoBmgJaA9DCNy4xfzctW1AlIaUUpRoFUu5aBZHQKAF0+0w8GN1fZQoaAZoCWgPQwhgzQGCOfJvQJSGlFKUaBVL6mgWR0CgBhRM36yjdX2UKGgGaAloD0MI31D4bB2+ckCUhpRSlGgVTQkBaBZHQKAGH4yGi6B1fZQoaAZoCWgPQwj0+/7NC+5zQJSGlFKUaBVL3GgWR0CgBoHQpnYhdX2UKGgGaAloD0MI5iFTPoQqb0CUhpRSlGgVS8loFkdAoAelTHbRGHV9lChoBmgJaA9DCC8X8Z0Y6XBAlIaUUpRoFUvuaBZHQKAH3S3LFGZ1fZQoaAZoCWgPQwiPccXF0W9yQJSGlFKUaBVL/WgWR0CgB/aX8fmtdX2UKGgGaAloD0MIoIobtxg7cUCUhpRSlGgVS7toFkdAoAfzfJmuknV9lChoBmgJaA9DCFrUJ7nD4nFAlIaUUpRoFUv+aBZHQKAIU2Kl54Z1fZQoaAZoCWgPQwi+hAoOb+5yQJSGlFKUaBVL3GgWR0CgCD9n003wdX2UKGgGaAloD0MIYM0BgjmwckCUhpRSlGgVS8toFkdAoAhQJkXk53V9lChoBmgJaA9DCFjJx+7CvHFAlIaUUpRoFUvQaBZHQKAI6TibUgB1fZQoaAZoCWgPQwgFw7mGGfRyQJSGlFKUaBVL7WgWR0CgCSnmRvFWdX2UKGgGaAloD0MIxeQNMPOsb0CUhpRSlGgVS8toFkdAoAlCXBxgiXV9lChoBmgJaA9DCF+X4T/dPm5AlIaUUpRoFUu3aBZHQKAJd7ALy+Z1fZQoaAZoCWgPQwgplltaDR9uQJSGlFKUaBVL4mgWR0CgCf0Re1KHdX2UKGgGaAloD0MIxR9FnTm7ckCUhpRSlGgVS+BoFkdAoAowtlI3BHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 420, "n_steps": 1500, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b747c23501bd5365aad92be8d57c33e3277d13bac3d104898cb9dcdf18e38c7
|
3 |
+
size 143987
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb60c82e710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb60c82e7a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb60c82e830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb60c82e8c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb60c82e950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb60c82e9e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb60c82ea70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb60c82eb00>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb60c82eb90>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb60c82ec20>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb60c82ecb0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb60c87d630>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1008000,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652065019.592064,
|
51 |
+
"learning_rate": 0.005,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz90euFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNyFD2E5yg/xpmcPfpnJL8R/688q3IPPQAAAAAAAAAArcYFviwbrj7QJ6s8Nd3Rvte6M72LTBe9AAAAAAAAAADa+S8+XYUCPip5jr4CkrO++yNEvTpxB74AAAAAAAAAAJqZ9LydGp0/mhJrvpNaTb9CAmG97IKdvQAAAAAAAAAAM/1tPCh5jz19x6Q8NmtFvjoRBDzM2TE9AAAAAAAAAADA4C6+NG+KvJuT7jpkBCs5YfL4PVOCH7oAAIA/AACAPxqVIT7+eag/L2cwP9KP8L4+CdQ97ac+PgAAAAAAAAAAQLAhvmyF9rsvhwa78yi1uGc9UT1g1yE6AACAPwAAgD8aVUC9FBiGukrHT7Wx/E+wu/KeuiovUjQAAIA/AACAPzaTgz6gZ8A+IQSEvtcbsr5H1XE+E2VrvgAAAAAAAAAAZlofvXGdVLtWiEo9d3vDvEfSC7y2zS29AACAPwAAgD9AhUW+kqgXP8W7GL3vvOa+OQpwvpmIsT0AAAAAAAAAAKaiv72klh88tmhxPh0ANL5RhuM9Sou7PAAAAAAAAIA/E4NDvqv4GT8bKue8i8fxvo6nIL5DRt49AAAAAAAAAACaxsW81k4ZPSpooz0EMFm+dQaAPDw9qzwAAAAAAAAAAIYgFD4ZJUg+kc0zvqWnsr6iuIi5QdmTvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.008000000000000007,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfjuJCH+zcECUhpRSlIwBbJRL34wBdJRHQJ/mGPLgXM11fZQoaAZoCWgPQwjgufdwSdtwQJSGlFKUaBVLzWgWR0Cf5khK15SndX2UKGgGaAloD0MIHvtZLMVxcUCUhpRSlGgVS9xoFkdAn+ZtcjZ+QXV9lChoBmgJaA9DCIVE2saf2FFAlIaUUpRoFUuVaBZHQJ/njwUg0TF1fZQoaAZoCWgPQwjTF0LOeyByQJSGlFKUaBVL7mgWR0Cf53a6BiCrdX2UKGgGaAloD0MI1qnyPeMpcECUhpRSlGgVS81oFkdAn+gI2XLNfXV9lChoBmgJaA9DCHi3skQnNHFAlIaUUpRoFUuzaBZHQJ/pCDzyz5Z1fZQoaAZoCWgPQwhOYhBY+dNwQJSGlFKUaBVL52gWR0Cf6OEB8x9HdX2UKGgGaAloD0MIeqpDboaYcUCUhpRSlGgVS6doFkdAn+jpcHGCI3V9lChoBmgJaA9DCNXpQNYTMHNAlIaUUpRoFUv+aBZHQJ/px53Tuv51fZQoaAZoCWgPQwi5/l2fedFxQJSGlFKUaBVL3WgWR0Cf6dZXMhX9dX2UKGgGaAloD0MIATJ07CB4bUCUhpRSlGgVS8BoFkdAn+qViz9jw3V9lChoBmgJaA9DCCXnxB5a9HFAlIaUUpRoFUvpaBZHQJ/rLGp++dt1fZQoaAZoCWgPQwh9smK4+kJxQJSGlFKUaBVL2WgWR0Cf7JANXo1UdX2UKGgGaAloD0MIdcsO8Q+8YUCUhpRSlGgVTegDaBZHQJ/syj4593N1fZQoaAZoCWgPQwj26053Hj1yQJSGlFKUaBVLymgWR0Cf7Qu5BkZrdX2UKGgGaAloD0MINZpcjAGHcECUhpRSlGgVS8poFkdAn+05Yoy9EnV9lChoBmgJaA9DCGHdeHckAHFAlIaUUpRoFUvEaBZHQJ/tJLdvbXZ1fZQoaAZoCWgPQwiwrDQpBbhwQJSGlFKUaBVLxWgWR0Cf7hDAJswddX2UKGgGaAloD0MIdT3RdaEvcECUhpRSlGgVS8RoFkdAn+6SVSn+AHV9lChoBmgJaA9DCMct5ufGPnJAlIaUUpRoFU0EAWgWR0Cf7rwPiDNAdX2UKGgGaAloD0MIzJasivDJcUCUhpRSlGgVS99oFkdAn+75LIxQBXV9lChoBmgJaA9DCKTeUzntEnJAlIaUUpRoFUvAaBZHQJ/vXxc3VCp1fZQoaAZoCWgPQwgp0Cfy5L9yQJSGlFKUaBVLxWgWR0Cf72idJ8OTdX2UKGgGaAloD0MIxCEbSJcybkCUhpRSlGgVS6xoFkdAn++BoysS03V9lChoBmgJaA9DCBea6zSSjHFAlIaUUpRoFUvTaBZHQJ/vwwSJ0nx1fZQoaAZoCWgPQwiduvJZXpdxQJSGlFKUaBVLz2gWR0Cf8HFGoaUBdX2UKGgGaAloD0MIFeEmo0rBcUCUhpRSlGgVS8hoFkdAn/DrkbPyCnV9lChoBmgJaA9DCLCNeLLbIHFAlIaUUpRoFUvIaBZHQJ/xeKWLP2R1fZQoaAZoCWgPQwisyOiAZHZxQJSGlFKUaBVLqWgWR0Cf8eX5WRzSdX2UKGgGaAloD0MIC7d8JKXCc0CUhpRSlGgVS7hoFkdAn/LCdOIqLHV9lChoBmgJaA9DCGEcXDomwXFAlIaUUpRoFUvhaBZHQJ/zgR28qWl1fZQoaAZoCWgPQwiCdLFpZWxxQJSGlFKUaBVLrGgWR0Cf9Aguyu6mdX2UKGgGaAloD0MIpriq7PuOcECUhpRSlGgVS+toFkdAn/RIcm0E5nV9lChoBmgJaA9DCE4JiEm4N3BAlIaUUpRoFUugaBZHQJ/0bfuTibV1fZQoaAZoCWgPQwjXoC+9vaVxQJSGlFKUaBVL4WgWR0Cf9QZbY9PldX2UKGgGaAloD0MInFCIgEOYcUCUhpRSlGgVS7doFkdAn/UKO5rgwXV9lChoBmgJaA9DCJOKxtpf/nFAlIaUUpRoFUvuaBZHQJ/18DDCP6t1fZQoaAZoCWgPQwhhcM0d/WpzQJSGlFKUaBVL7GgWR0Cf9kvRqoIfdX2UKGgGaAloD0MI7xzKUFVec0CUhpRSlGgVTSYBaBZHQJ/2PijtXxR1fZQoaAZoCWgPQwgMdy6MNFZyQJSGlFKUaBVLwGgWR0Cf9n9HMEA6dX2UKGgGaAloD0MIz79d9iv8c0CUhpRSlGgVS/JoFkdAn/bdXHR1HXV9lChoBmgJaA9DCCNpN/oYz3FAlIaUUpRoFUvhaBZHQJ/2wPAfuCx1fZQoaAZoCWgPQwiKITmZOOVuQJSGlFKUaBVLxWgWR0Cf96ieNDMNdX2UKGgGaAloD0MIjQkxl5RZcUCUhpRSlGgVS+RoFkdAn/gD+WGATnV9lChoBmgJaA9DCMu76gHzQG9AlIaUUpRoFUvZaBZHQJ/4m42CNCJ1fZQoaAZoCWgPQwgt0O6QYoxuQJSGlFKUaBVLy2gWR0Cf+QbmEGqxdX2UKGgGaAloD0MIh/nyAuw4bUCUhpRSlGgVS8NoFkdAn/pTJuEVWXV9lChoBmgJaA9DCA5N2ekHNHFAlIaUUpRoFUvXaBZHQJ/6kM6RyOt1fZQoaAZoCWgPQwjCiejXloBwQJSGlFKUaBVL1GgWR0Cf+rYHPeHjdX2UKGgGaAloD0MIKVlOQumnbkCUhpRSlGgVS8toFkdAn/sxnzxwynV9lChoBmgJaA9DCCFAho7du3FAlIaUUpRoFUvHaBZHQJ/8AM+eOGV1fZQoaAZoCWgPQwjhehSuR7tvQJSGlFKUaBVLtWgWR0Cf/F4CZF5OdX2UKGgGaAloD0MIEVMiid76b0CUhpRSlGgVS/FoFkdAn/xqoddVvXV9lChoBmgJaA9DCMNEgxT8cnBAlIaUUpRoFUvTaBZHQJ/8rowEhaF1fZQoaAZoCWgPQwgj3c8pSKlzQJSGlFKUaBVLxmgWR0Cf/NM6RyOrdX2UKGgGaAloD0MILBA9KVOWcUCUhpRSlGgVS9poFkdAn/0qaG5+Y3V9lChoBmgJaA9DCKD7cma7w3JAlIaUUpRoFUvuaBZHQJ/9l2X9itt1fZQoaAZoCWgPQwiv0t11to9xQJSGlFKUaBVLx2gWR0Cf/jhFmWdFdX2UKGgGaAloD0MI3PEmv8WCcECUhpRSlGgVS6poFkdAn/5lXA/LT3V9lChoBmgJaA9DCH3MBwR6W3BAlIaUUpRoFUvIaBZHQJ/+5xLkCFN1fZQoaAZoCWgPQwhZEwt8xURyQJSGlFKUaBVNiAFoFkdAn/+6F7D2rXV9lChoBmgJaA9DCDQRNjw9QHFAlIaUUpRoFUvJaBZHQKAAZz5oGpx1fZQoaAZoCWgPQwg+JlKaTRpyQJSGlFKUaBVLz2gWR0CgALuiN83NdX2UKGgGaAloD0MIlbVN8bj5b0CUhpRSlGgVS6poFkdAoADIdhiLEXV9lChoBmgJaA9DCKG6ufhb7G1AlIaUUpRoFUvKaBZHQKAA5s8gZCR1fZQoaAZoCWgPQwjXMa64+K1wQJSGlFKUaBVLoWgWR0CgAQvD50r9dX2UKGgGaAloD0MIRKhSs0c+ckCUhpRSlGgVS6xoFkdAoAEn7tReknV9lChoBmgJaA9DCAclzLQ94nBAlIaUUpRoFUu9aBZHQKABRtNzr/t1fZQoaAZoCWgPQwj8prBSQf5vQJSGlFKUaBVLumgWR0CgAUDX4CZGdX2UKGgGaAloD0MIKSMuAM30cECUhpRSlGgVS8FoFkdAoAG8LjPv8nV9lChoBmgJaA9DCGyVYHH4qHBAlIaUUpRoFUvYaBZHQKACYN3GGVR1fZQoaAZoCWgPQwgAGxAhruxxQJSGlFKUaBVLxWgWR0CgAmetKZlWdX2UKGgGaAloD0MIWp4Hd+fabkCUhpRSlGgVS8NoFkdAoAMtC1JDmnV9lChoBmgJaA9DCAXfNH22GnNAlIaUUpRoFUvmaBZHQKADXvXsgMd1fZQoaAZoCWgPQwhYHM78KrtxQJSGlFKUaBVL/mgWR0CgA4dBa9sadX2UKGgGaAloD0MILNMvEa9BcUCUhpRSlGgVS7BoFkdAoAPiyD7Ik3V9lChoBmgJaA9DCIczv5qDzXBAlIaUUpRoFUusaBZHQKAEH5Sm65J1fZQoaAZoCWgPQwgA5e/eUT9yQJSGlFKUaBVL0WgWR0CgBHCFK02MdX2UKGgGaAloD0MIVkj5STVbc0CUhpRSlGgVS8poFkdAoASBqEeyRnV9lChoBmgJaA9DCMHicOYXT3NAlIaUUpRoFUv1aBZHQKAExEkSmIl1fZQoaAZoCWgPQwhfDVAaKmhxQJSGlFKUaBVL2GgWR0CgBQ1MmF8HdX2UKGgGaAloD0MI9RQ5RFxkcUCUhpRSlGgVS+poFkdAoAWA+GGmDXV9lChoBmgJaA9DCNy4xfzctW1AlIaUUpRoFUu5aBZHQKAF0+0w8GN1fZQoaAZoCWgPQwhgzQGCOfJvQJSGlFKUaBVL6mgWR0CgBhRM36yjdX2UKGgGaAloD0MI31D4bB2+ckCUhpRSlGgVTQkBaBZHQKAGH4yGi6B1fZQoaAZoCWgPQwj0+/7NC+5zQJSGlFKUaBVL3GgWR0CgBoHQpnYhdX2UKGgGaAloD0MI5iFTPoQqb0CUhpRSlGgVS8loFkdAoAelTHbRGHV9lChoBmgJaA9DCC8X8Z0Y6XBAlIaUUpRoFUvuaBZHQKAH3S3LFGZ1fZQoaAZoCWgPQwiPccXF0W9yQJSGlFKUaBVL/WgWR0CgB/aX8fmtdX2UKGgGaAloD0MIoIobtxg7cUCUhpRSlGgVS7toFkdAoAfzfJmuknV9lChoBmgJaA9DCFrUJ7nD4nFAlIaUUpRoFUv+aBZHQKAIU2Kl54Z1fZQoaAZoCWgPQwi+hAoOb+5yQJSGlFKUaBVL3GgWR0CgCD9n003wdX2UKGgGaAloD0MIYM0BgjmwckCUhpRSlGgVS8toFkdAoAhQJkXk53V9lChoBmgJaA9DCFjJx+7CvHFAlIaUUpRoFUvQaBZHQKAI6TibUgB1fZQoaAZoCWgPQwgFw7mGGfRyQJSGlFKUaBVL7WgWR0CgCSnmRvFWdX2UKGgGaAloD0MIxeQNMPOsb0CUhpRSlGgVS8toFkdAoAlCXBxgiXV9lChoBmgJaA9DCF+X4T/dPm5AlIaUUpRoFUu3aBZHQKAJd7ALy+Z1fZQoaAZoCWgPQwgplltaDR9uQJSGlFKUaBVL4mgWR0CgCf0Re1KHdX2UKGgGaAloD0MIxR9FnTm7ckCUhpRSlGgVS+BoFkdAoAowtlI3BHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 420,
|
79 |
+
"n_steps": 1500,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d7b7c076b983252d2e7b49d469575c594dbfa959c464c7a68226437f55b2c53
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d502c87313fef0aedb2234dde114c1ba861814daf37c9e22f0d52e7c7f04f3d0
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c709e91357bd1a8ca4ea29a35d4dd690c420682d442658ddad1b9950f394f01
|
3 |
+
size 199689
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 268.72111946242495, "std_reward": 15.637294077524118, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T03:34:26.395584"}
|