|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import os |
|
|
|
import torch |
|
|
|
from cosmos1.models.diffusion.inference.inference_utils import add_common_arguments, validate_args |
|
from cosmos1.models.diffusion.inference.world_generation_pipeline import DiffusionText2WorldGenerationPipeline |
|
from cosmos1.utils import log, misc |
|
from cosmos1.utils.io import read_prompts_from_file, save_video |
|
|
|
torch.enable_grad(False) |
|
|
|
|
|
def parse_arguments() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser(description="Text to world generation demo script") |
|
|
|
add_common_arguments(parser) |
|
|
|
|
|
parser.add_argument( |
|
"--diffusion_transformer_dir", |
|
type=str, |
|
default="Cosmos-1.0-Diffusion-7B-Text2World", |
|
help="DiT model weights directory name relative to checkpoint_dir", |
|
choices=[ |
|
"Cosmos-1.0-Diffusion-7B-Text2World", |
|
"Cosmos-1.0-Diffusion-14B-Text2World", |
|
], |
|
) |
|
parser.add_argument( |
|
"--prompt_upsampler_dir", |
|
type=str, |
|
default="Cosmos-1.0-Prompt-Upsampler-12B-Text2World", |
|
help="Prompt upsampler weights directory relative to checkpoint_dir", |
|
) |
|
|
|
parser.add_argument( |
|
"--word_limit_to_skip_upsampler", |
|
type=int, |
|
default=250, |
|
help="Skip prompt upsampler for better robustness if the number of words in the prompt is greater than this value", |
|
) |
|
|
|
return parser.parse_args() |
|
|
|
|
|
def demo(cfg): |
|
"""Run text-to-world generation demo. |
|
|
|
This function handles the main text-to-world generation pipeline, including: |
|
- Setting up the random seed for reproducibility |
|
- Initializing the generation pipeline with the provided configuration |
|
- Processing single or multiple prompts from input |
|
- Generating videos from text prompts |
|
- Saving the generated videos and corresponding prompts to disk |
|
|
|
Args: |
|
cfg (argparse.Namespace): Configuration namespace containing: |
|
- Model configuration (checkpoint paths, model settings) |
|
- Generation parameters (guidance, steps, dimensions) |
|
- Input/output settings (prompts, save paths) |
|
- Performance options (model offloading settings) |
|
|
|
The function will save: |
|
- Generated MP4 video files |
|
- Text files containing the processed prompts |
|
|
|
If guardrails block the generation, a critical log message is displayed |
|
and the function continues to the next prompt if available. |
|
""" |
|
misc.set_random_seed(cfg.seed) |
|
inference_type = "text2world" |
|
validate_args(cfg, inference_type) |
|
|
|
|
|
pipeline = DiffusionText2WorldGenerationPipeline( |
|
inference_type=inference_type, |
|
checkpoint_dir=cfg.checkpoint_dir, |
|
checkpoint_name=cfg.diffusion_transformer_dir, |
|
prompt_upsampler_dir=cfg.prompt_upsampler_dir, |
|
enable_prompt_upsampler=not cfg.disable_prompt_upsampler, |
|
offload_network=cfg.offload_diffusion_transformer, |
|
offload_tokenizer=cfg.offload_tokenizer, |
|
offload_text_encoder_model=cfg.offload_text_encoder_model, |
|
offload_prompt_upsampler=cfg.offload_prompt_upsampler, |
|
offload_guardrail_models=cfg.offload_guardrail_models, |
|
guidance=cfg.guidance, |
|
num_steps=cfg.num_steps, |
|
height=cfg.height, |
|
width=cfg.width, |
|
fps=cfg.fps, |
|
num_video_frames=cfg.num_video_frames, |
|
seed=cfg.seed, |
|
) |
|
|
|
|
|
if cfg.batch_input_path: |
|
log.info(f"Reading batch inputs from path: {args.batch_input_path}") |
|
prompts = read_prompts_from_file(cfg.batch_input_path) |
|
else: |
|
|
|
prompts = [{"prompt": cfg.prompt}] |
|
|
|
os.makedirs(cfg.video_save_folder, exist_ok=True) |
|
for i, input_dict in enumerate(prompts): |
|
current_prompt = input_dict.get("prompt", None) |
|
if current_prompt is None: |
|
log.critical("Prompt is missing, skipping world generation.") |
|
continue |
|
|
|
|
|
generated_output = pipeline.generate(current_prompt, cfg.negative_prompt, cfg.word_limit_to_skip_upsampler) |
|
if generated_output is None: |
|
log.critical("Guardrail blocked text2world generation.") |
|
continue |
|
video, prompt = generated_output |
|
|
|
if cfg.batch_input_path: |
|
video_save_path = os.path.join(cfg.video_save_folder, f"{i}.mp4") |
|
prompt_save_path = os.path.join(cfg.video_save_folder, f"{i}.txt") |
|
else: |
|
video_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.mp4") |
|
prompt_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.txt") |
|
|
|
|
|
save_video( |
|
video=video, |
|
fps=cfg.fps, |
|
H=cfg.height, |
|
W=cfg.width, |
|
video_save_quality=5, |
|
video_save_path=video_save_path, |
|
) |
|
|
|
|
|
with open(prompt_save_path, "wb") as f: |
|
f.write(prompt.encode("utf-8")) |
|
|
|
log.info(f"Saved video to {video_save_path}") |
|
log.info(f"Saved prompt to {prompt_save_path}") |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_arguments() |
|
demo(args) |
|
|