{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa54a8fe440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa54a8fe4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa54a8fe560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa54a8fe5f0>", "_build": "<function ActorCriticPolicy._build at 0x7fa54a8fe680>", "forward": "<function ActorCriticPolicy.forward at 0x7fa54a8fe710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa54a8fe7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa54a8fe830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa54a8fe8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa54a8fe950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa54a8fe9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa54a93bd50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 24, "num_timesteps": 1032192, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651690471.5116465, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAJqFUDzseZs/zvGIPVE//r6DGHS8How/vQAAAAAAAAAAM+V4PRqkmD/1BWk+zQUev+qRPD1SSM88AAAAAAAAAAAgiBa+4RjAum7LKj4BNye+kv/Iu5MB2D4AAIA/AAAAAMDktr0I05A/TrZavn4ME7/T3K+92W2DvQAAAAAAAAAA2uzPvU/rB7zo12I+3hJXPQfeZ73vDC4+AACAPwAAAACzcD49xEKqPwWU9T2+hAi/BtQ3ParvD70AAAAAAAAAAArrWL6055s+b/IJPltDv75B8a+9dGeIPQAAAAAAAAAAra9Fvqbygz/SBHC+El/ZvvigBr54Hg29AAAAAAAAAAAArMs8KQRwup7vnjhk55szvbEkO8BlurcAAIA/AACAP3PEhT0E5WE+bjVNPV50er7rMSA9szxAPQAAAAAAAAAAMxsavb3oZTydiWk+B8Buvo11WT2KGcs9AAAAAAAAAAAA2Rg94Tyiuk9GoLvuChQ5bjwXut25JzoAAIA/AACAP+OPYL5SAAQ/Joy9PKAitr5zY4i9GIt0PQAAAAAAAAAAzZDoO252iD70QQo+CULYvuff3L1S71I9AAAAAAAAAACjz4u+7jpFP3vPML67Ttm+pzKKvrM6mTwAAAAAAAAAALqxLz4HOAo+UpJqvkPqsr5rhjU9R+C1PAAAAAAAAAAAAAtAvo73rrzGc+s4nxKBN9eaFz7CMSK4AACAPwAAgD8AtI88FNqTvBLv2LzZdl09KWqhPd5M3DsAAIA/AACAP8CtgT2Saq88YvTtvWZqer5oNYE8jCnJvAAAAAAAAAAAs8WavawX7DwaGSw+JFMxvjRvsDyo6qE8AAAAAAAAAAAa+J6+0A6xPo41bD4nUou+k5umvYBXIT0AAAAAAAAAAE3Cmr1cW3e6/r34tXIVHrHnp406JjodNQAAgD8AAIA/AK4OvfaPdry2Ka+9vqh8vJYH3j2yKEw9AACAPwAAgD+zjbM9w5EouoiIabN6YIGuFgv5uT8csjMAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.032192, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0A1N2Wk8c0CUhpRSlIwBbJRL8IwBdJRHQLR2eTdtVJd1fZQoaAZoCWgPQwjz/6ojR4ZGQJSGlFKUaBVLpWgWR0C0domLpA2RdX2UKGgGaAloD0MIchjMX2GucUCUhpRSlGgVS7toFkdAtHaeL/CIlHV9lChoBmgJaA9DCN+/eXHiQ3JAlIaUUpRoFU0bAWgWR0C0dqDyvs7ddX2UKGgGaAloD0MI1zIZjmcDcUCUhpRSlGgVS7toFkdAtHa4F8ohIXV9lChoBmgJaA9DCN1ELc1tcHJAlIaUUpRoFU0AAWgWR0C0drhL9MsZdX2UKGgGaAloD0MIbhlwlpJFb0CUhpRSlGgVS9RoFkdAtHbjYwqRU3V9lChoBmgJaA9DCJVHN8Iinm9AlIaUUpRoFU0MAWgWR0C0du78rI5pdX2UKGgGaAloD0MIvcKC+8Fsc0CUhpRSlGgVTQUBaBZHQLR296BiCrd1fZQoaAZoCWgPQwi2aWyvRfNyQJSGlFKUaBVNMQFoFkdAtHcHOW0JGHV9lChoBmgJaA9DCK2m64mudXBAlIaUUpRoFUv1aBZHQLR3Jx1PnCB1fZQoaAZoCWgPQwj0p43qdDBwQJSGlFKUaBVLx2gWR0C0d0v2TPjXdX2UKGgGaAloD0MIJNV3ftEsckCUhpRSlGgVS+ZoFkdAtHfq2sq8UXV9lChoBmgJaA9DCHRC6KCL03NAlIaUUpRoFU0BAWgWR0C0d/KqKgqWdX2UKGgGaAloD0MIPQtCeR/YcUCUhpRSlGgVTQwBaBZHQLR38uR9w3p1fZQoaAZoCWgPQwhNMJxrGPtwQJSGlFKUaBVL0GgWR0C0eAH6l+EzdX2UKGgGaAloD0MIMGZLVgVvcECUhpRSlGgVS8VoFkdAtHglFXq7iHV9lChoBmgJaA9DCOAT61T5HjlAlIaUUpRoFUu5aBZHQLR4LOSGJvZ1fZQoaAZoCWgPQwilFkom5/9yQJSGlFKUaBVL7GgWR0C0eDoO6NEPdX2UKGgGaAloD0MIKV/QQoLUckCUhpRSlGgVTRoBaBZHQLR4PAavRqp1fZQoaAZoCWgPQwh2pWWkXmRwQJSGlFKUaBVLuGgWR0C0eGSyUs4DdX2UKGgGaAloD0MIkuf6PtxPcECUhpRSlGgVTQUBaBZHQLR4jVmBe5Z1fZQoaAZoCWgPQwgK9Ik8SZZHQJSGlFKUaBVLs2gWR0C0eJlIiC8OdX2UKGgGaAloD0MIGjVfJV8AcECUhpRSlGgVS/FoFkdAtHigN/e+EnV9lChoBmgJaA9DCHJsPUM4rnFAlIaUUpRoFU1dAWgWR0C0eRCNKh+OdX2UKGgGaAloD0MISRRa1j0pc0CUhpRSlGgVTRUBaBZHQLR5GU/fO2R1fZQoaAZoCWgPQwi5MxMMZ19wQJSGlFKUaBVNDAFoFkdAtHkZi+cpb3V9lChoBmgJaA9DCLZI2o0+vW1AlIaUUpRoFUvRaBZHQLR5Qb4agmJ1fZQoaAZoCWgPQwgKStHKvWFxQJSGlFKUaBVNewJoFkdAtHlWl67dznV9lChoBmgJaA9DCI1GPq84xXBAlIaUUpRoFU0tAWgWR0C0eWTFAE+xdX2UKGgGaAloD0MIAkuuYjEsckCUhpRSlGgVTRgBaBZHQLR5gfp2U0N1fZQoaAZoCWgPQwjvVwG+W51yQJSGlFKUaBVNEwFoFkdAtHmQWVNYbXV9lChoBmgJaA9DCAXgn1KlR3BAlIaUUpRoFUvIaBZHQLR55EAHVwx1fZQoaAZoCWgPQwgdIJijR0hyQJSGlFKUaBVNKAFoFkdAtHnppcophHV9lChoBmgJaA9DCDi9i/djDnFAlIaUUpRoFUvVaBZHQLR6Q38n/kx1fZQoaAZoCWgPQwiLw5lfjfBxQJSGlFKUaBVL4GgWR0C0elSMglnidX2UKGgGaAloD0MIAI3Spb9KcECUhpRSlGgVTQ0BaBZHQLR6ivGZNPB1fZQoaAZoCWgPQwiwWMNFrrhyQJSGlFKUaBVNhAFoFkdAtHqT0pVjqnV9lChoBmgJaA9DCOkLIef96XBAlIaUUpRoFUvNaBZHQLR6oVuJk5J1fZQoaAZoCWgPQwgTDyibsh9xQJSGlFKUaBVNJQFoFkdAtHrXcFhXsHV9lChoBmgJaA9DCCEhyhe0NnJAlIaUUpRoFU0GAWgWR0C0ewbdepn6dX2UKGgGaAloD0MI1QRR9wFJckCUhpRSlGgVS8NoFkdAtHsTnuAqeHV9lChoBmgJaA9DCOcAwRw9sXJAlIaUUpRoFUv6aBZHQLR7FSJ0nw51fZQoaAZoCWgPQwh+Oh4zUGtxQJSGlFKUaBVNNQFoFkdAtHtXDFZPmHV9lChoBmgJaA9DCPG8VGyM1nJAlIaUUpRoFU0RAWgWR0C0e2qdtl7MdX2UKGgGaAloD0MI5Eo9C8KmcECUhpRSlGgVS9NoFkdAtHt4aNuLrHV9lChoBmgJaA9DCHU5JSCmP2FAlIaUUpRoFU3oA2gWR0C0e55MQEpzdX2UKGgGaAloD0MI8DZvnBSccECUhpRSlGgVS/RoFkdAtHujlbNbDHV9lChoBmgJaA9DCEga3NYWyEdAlIaUUpRoFUvNaBZHQLR7sFQEZBN1fZQoaAZoCWgPQwiULv1LErxxQJSGlFKUaBVL/mgWR0C0e7v2wmmcdX2UKGgGaAloD0MIFokJanjub0CUhpRSlGgVS+ZoFkdAtHvAh6jWTXV9lChoBmgJaA9DCCkGSDSBKlVAlIaUUpRoFUuKaBZHQLR8EKlHjId1fZQoaAZoCWgPQwjSpuoeGbpwQJSGlFKUaBVNoAFoFkdAtHwaY1He8HV9lChoBmgJaA9DCGmLa3wmnHFAlIaUUpRoFUvXaBZHQLR8KpNsWO91fZQoaAZoCWgPQwhXCKuxhN1OQJSGlFKUaBVLpmgWR0C0fEYhllK9dX2UKGgGaAloD0MIU8+CUF5cckCUhpRSlGgVTRwBaBZHQLR8TTufEn91fZQoaAZoCWgPQwhWf4RhANpxQJSGlFKUaBVNFQFoFkdAtHxmIrOJL3V9lChoBmgJaA9DCBvxZDdz6nJAlIaUUpRoFU0cAWgWR0C0fMZ9qk/KdX2UKGgGaAloD0MIFXKlnkWHckCUhpRSlGgVTQsBaBZHQLR9BdZ7ojh1fZQoaAZoCWgPQwhne/SG++RuQJSGlFKUaBVLzGgWR0C0fQ7hR64UdX2UKGgGaAloD0MIdovAWN/lbkCUhpRSlGgVTRQBaBZHQLR9DhqTKT11fZQoaAZoCWgPQwjG/NzQ1OxyQJSGlFKUaBVNFwFoFkdAtH1VVGTcI3V9lChoBmgJaA9DCLadtkZEg3FAlIaUUpRoFUv1aBZHQLR9ecuanaZ1fZQoaAZoCWgPQwjLgR5qG85wQJSGlFKUaBVNFwFoFkdAtH2dEb5uZXV9lChoBmgJaA9DCCeEDrpEPXFAlIaUUpRoFUvraBZHQLR9wG6wt8N1fZQoaAZoCWgPQwhqFf2hme1yQJSGlFKUaBVL+2gWR0C0fd5lOGj9dX2UKGgGaAloD0MI/b/qyNFrckCUhpRSlGgVS/VoFkdAtH4DDVH4GnV9lChoBmgJaA9DCHHjFvOzFXFAlIaUUpRoFU0zAWgWR0C0fhZGax5cdX2UKGgGaAloD0MIVydnKK5tcUCUhpRSlGgVTQABaBZHQLR+Mv+fh/B1fZQoaAZoCWgPQwgwurw53NJwQJSGlFKUaBVNIgFoFkdAtH41g6U7jnV9lChoBmgJaA9DCM4AF2RLeHNAlIaUUpRoFU0PAWgWR0C0fku5OJtSdX2UKGgGaAloD0MIGjT0T3DSckCUhpRSlGgVTQ8BaBZHQLR+ZBFNL151fZQoaAZoCWgPQwjOGVHamx1yQJSGlFKUaBVL4WgWR0C0fmaCL/CJdX2UKGgGaAloD0MIOIWVCirmcUCUhpRSlGgVTQABaBZHQLR+nAKv3al1fZQoaAZoCWgPQwjzkCkfwqdwQJSGlFKUaBVL4WgWR0C0fqtRBNVSdX2UKGgGaAloD0MIECBDx84rcECUhpRSlGgVS7VoFkdAtH7qDEm6XnV9lChoBmgJaA9DCMVwdQDEhHJAlIaUUpRoFU0QAWgWR0C0fwqur6tUdX2UKGgGaAloD0MIQQ5KmGlobECUhpRSlGgVTTUBaBZHQLR/MpXIU8F1fZQoaAZoCWgPQwjKcDyfQRFwQJSGlFKUaBVNJAFoFkdAtH84n+hoNHV9lChoBmgJaA9DCLJmZJA7dHBAlIaUUpRoFUvBaBZHQLR/U5/LDAJ1fZQoaAZoCWgPQwhBguLHGHRxQJSGlFKUaBVL62gWR0C0f26fjCHidX2UKGgGaAloD0MIvjCZKtglcUCUhpRSlGgVS/ZoFkdAtH+Rp1zQu3V9lChoBmgJaA9DCPJdSl2yIHBAlIaUUpRoFUvVaBZHQLR/pUO/cnF1fZQoaAZoCWgPQwiKVYMwN0lxQJSGlFKUaBVNjgFoFkdAtH+ueUY8+3V9lChoBmgJaA9DCIY8ghup9nBAlIaUUpRoFU0eAWgWR0C0f678rI5pdX2UKGgGaAloD0MIAb9GkiC0NUCUhpRSlGgVS6NoFkdAtH/l2gWadHV9lChoBmgJaA9DCCntDb4weG1AlIaUUpRoFUvlaBZHQLR/6F9roGJ1fZQoaAZoCWgPQwh2/u2yH5NxQJSGlFKUaBVL62gWR0C0gBa3qiXZdX2UKGgGaAloD0MIOxvyz8w3ckCUhpRSlGgVS+FoFkdAtIAY9Pk7wXV9lChoBmgJaA9DCAUVVb/SUHFAlIaUUpRoFUv2aBZHQLSAdBPbfxd1fZQoaAZoCWgPQwhYqDXNO2xyQJSGlFKUaBVLwWgWR0C0gIPCyhSMdX2UKGgGaAloD0MI6rDCLR8NTkCUhpRSlGgVTegDaBZHQLSAiR28qWl1fZQoaAZoCWgPQwhd4PJYcz9zQJSGlFKUaBVL/2gWR0C0gJxBzFMqdX2UKGgGaAloD0MI5ULlX0vEbkCUhpRSlGgVS+VoFkdAtICp+OOsDHV9lChoBmgJaA9DCLzLRXyn1nFAlIaUUpRoFU0BAWgWR0C0gOwYxcmjdX2UKGgGaAloD0MIBK+WO3MPcECUhpRSlGgVTRsBaBZHQLSA/6/qPfd1fZQoaAZoCWgPQwj3Hi457l1xQJSGlFKUaBVNMQFoFkdAtIE17x/d7HV9lChoBmgJaA9DCBA+lGhJx21AlIaUUpRoFUvJaBZHQLSBSEXLvCx1fZQoaAZoCWgPQwhkXdxGgw1uQJSGlFKUaBVL82gWR0C0gU2pVCHAdX2UKGgGaAloD0MIR3L5D2llcUCUhpRSlGgVS7toFkdAtIFk6PsAvXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 210, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}} |