cathyi commited on
Commit
db02e10
1 Parent(s): acd98d4

update handler

Browse files
Files changed (1) hide show
  1. handler.py +33 -28
handler.py CHANGED
@@ -1,48 +1,53 @@
1
- import torch
2
  from typing import Dict, List, Any
 
 
 
 
3
  from transformers import (
4
- AutomaticSpeechRecognitionPipeline,
5
- WhisperForConditionalGeneration,
6
- WhisperTokenizer,
7
- WhisperProcessor,
8
- pipeline
9
  )
10
  from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model, PeftConfig
11
 
12
  class EndpointHandler():
13
  def __init__(self, path=""):
14
- # Preload all the elements you are going to need at inference.
15
- peft_model_id = "cathyi/openai-whisper-large-v2-Lora"
16
  language = "Chinese"
17
- task = "transcribe"
18
- peft_config = PeftConfig.from_pretrained(peft_model_id)
19
- model= WhisperForConditionalGeneration.from_pretrained(
20
  peft_config.base_model_name_or_path
21
  )
22
- model = PeftModel.from_pretrained(model, peft_model_id)
23
  tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
24
  processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
25
  feature_extractor = processor.feature_extractor
26
  self.forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
27
- # self.pipeline = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
28
- self.pipeline = pipeline(task= "automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
29
- self.pipeline.model.config.forced_decoder_ids = self.pipeline.tokenizer.get_decoder_prompt_ids(language="Chinese", task="transcribe")
30
- self.pipeline.model.generation_config.forced_decoder_ids = self.pipeline.model.config.forced_decoder_ids # just to be sure!
31
- # self.pipeline = pipeline(task= "automatic-speech-recognition", model=self.model)
32
- # self.pipeline.model.config.forced_decoder_ids = self.pipeline.tokenizer.get_decoder_prompt_ids(language="Chinese", task="transcribe")
33
- # self.pipeline.model.generation_config.forced_decoder_ids = self.pipeline.model.config.forced_decoder_ids
34
-
35
  def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
36
  """
37
- data args:
38
- inputs (:obj: `str` | `PIL.Image` | `np.array`)
39
- kwargs
40
- Return:
41
  A :obj:`list` | `dict`: will be serialized and returned
42
  """
43
-
 
 
44
  inputs = data.pop("inputs", data)
45
- with torch.cuda.amp.autocast():
46
- # prediction = self.pipeline(inputs, generate_kwargs={"forced_decoder_ids": self.forced_decoder_ids}, max_new_tokens=255)["text"]
47
- prediction = self.pipeline(inputs, return_timestamps=False)
 
 
 
 
 
 
48
  return prediction
 
 
1
  from typing import Dict, List, Any
2
+ from transformers import pipeline
3
+
4
+ import sys
5
+ import torch
6
  from transformers import (
7
+ AutomaticSpeechRecognitionPipeline,
8
+ WhisperForConditionalGeneration,
9
+ WhisperTokenizer,
10
+ WhisperProcessor
 
11
  )
12
  from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model, PeftConfig
13
 
14
  class EndpointHandler():
15
  def __init__(self, path=""):
16
+
 
17
  language = "Chinese"
18
+ task = "transcribe"
19
+ peft_config = PeftConfig.from_pretrained(path)
20
+ model = WhisperForConditionalGeneration.from_pretrained(
21
  peft_config.base_model_name_or_path
22
  )
23
+ model = PeftModel.from_pretrained(model, path)
24
  tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
25
  processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
26
  feature_extractor = processor.feature_extractor
27
  self.forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
28
+ self.pipeline = pipeline(task= "automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor = feature_extractor)
29
+ self.pipeline.model.config.forced_decoder_ids = self.pipeline.tokenizer.get_decoder_prompt_ids(language=language, task=task)
30
+ self.pipeline.model.generation_config.forced_decoder_ids = self.pipeline.model.config.forced_decoder_ids
31
+
 
 
 
 
32
  def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
33
  """
34
+ data args:
35
+ inputs (:obj: `str`)
36
+ date (:obj: `str`)
37
+ Return:
38
  A :obj:`list` | `dict`: will be serialized and returned
39
  """
40
+ # get inputs
41
+
42
+ # run normal prediction
43
  inputs = data.pop("inputs", data)
44
+ print("a1", inputs)
45
+ print("a2", inputs, file=sys.stderr)
46
+ print("a3", inputs, file=sys.stdout)
47
+
48
+ prediction = self.pipeline(inputs, return_timestamps=False)
49
+
50
+ print("b1", prediction)
51
+ print("b2", prediction, file=sys.stderr)
52
+ print("b3", prediction, file=sys.stdout)
53
  return prediction