Erdenebold commited on
Commit
058cb4c
1 Parent(s): 842f46e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: testing_mongolian-roberta_base
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # testing_mongolian-roberta_base
20
+
21
+ This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1244
24
+ - Precision: 0.9311
25
+ - Recall: 0.9399
26
+ - F1: 0.9355
27
+ - Accuracy: 0.9821
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.1683 | 1.0 | 477 | 0.0805 | 0.8377 | 0.8921 | 0.8640 | 0.9730 |
59
+ | 0.0545 | 2.0 | 954 | 0.0739 | 0.9205 | 0.9334 | 0.9269 | 0.9806 |
60
+ | 0.0292 | 3.0 | 1431 | 0.0778 | 0.9270 | 0.9354 | 0.9312 | 0.9817 |
61
+ | 0.0164 | 4.0 | 1908 | 0.0884 | 0.9290 | 0.9360 | 0.9325 | 0.9820 |
62
+ | 0.008 | 5.0 | 2385 | 0.1025 | 0.9247 | 0.9365 | 0.9306 | 0.9811 |
63
+ | 0.0057 | 6.0 | 2862 | 0.1093 | 0.9294 | 0.9369 | 0.9331 | 0.9815 |
64
+ | 0.0037 | 7.0 | 3339 | 0.1173 | 0.9336 | 0.9412 | 0.9374 | 0.9822 |
65
+ | 0.0026 | 8.0 | 3816 | 0.1217 | 0.9281 | 0.9374 | 0.9327 | 0.9817 |
66
+ | 0.0016 | 9.0 | 4293 | 0.1225 | 0.9334 | 0.9399 | 0.9366 | 0.9821 |
67
+ | 0.0012 | 10.0 | 4770 | 0.1244 | 0.9311 | 0.9399 | 0.9355 | 0.9821 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.28.0
73
+ - Pytorch 2.0.1+cu118
74
+ - Datasets 2.12.0
75
+ - Tokenizers 0.13.3