|
import os.path |
|
import shutil |
|
import tempfile |
|
import unittest |
|
|
|
import torch |
|
from modelscope import Model |
|
|
|
from swift import LoRAConfig, Swift |
|
from swift.tuners.utils import ModulesToSaveWrapper |
|
|
|
|
|
class TestExtraStateDict(unittest.TestCase): |
|
|
|
def setUp(self): |
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) |
|
self.tmp_dir = tempfile.TemporaryDirectory().name |
|
if not os.path.exists(self.tmp_dir): |
|
os.makedirs(self.tmp_dir) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmp_dir) |
|
super().tearDown() |
|
|
|
def test_swift_extra_state_dict(self): |
|
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base') |
|
lora_config = LoRAConfig(target_modules=['query', 'key', 'value']) |
|
model = Swift.prepare_model(model, lora_config, extra_state_keys=['classifier.*']) |
|
model.save_pretrained(self.tmp_dir) |
|
self.assertTrue(os.path.isfile(os.path.join(self.tmp_dir, 'extra_states', 'adapter_model.bin'))) |
|
state_dict = torch.load(os.path.join(self.tmp_dir, 'extra_states', 'adapter_model.bin')) |
|
self.assertTrue(any('classifier' in key for key in state_dict)) |
|
state_dict['classifier.weight'] = torch.ones_like(state_dict['classifier.weight']) * 2.0 |
|
with open(os.path.join(self.tmp_dir, 'extra_states', 'adapter_model.bin'), 'wb') as f: |
|
torch.save(state_dict, f) |
|
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base') |
|
model = Swift.from_pretrained(model, self.tmp_dir, inference_mode=False) |
|
names = [name for name, value in model.named_parameters() if value.requires_grad] |
|
self.assertTrue(any('classifier' in name for name in names)) |
|
self.assertTrue(torch.allclose(state_dict['classifier.weight'], model.base_model.classifier.weight)) |
|
|
|
def test_swift_modules_to_save(self): |
|
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base') |
|
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'], modules_to_save=['classifier']) |
|
lora_config2 = LoRAConfig(target_modules=['query', 'key', 'value'], modules_to_save=['classifier']) |
|
model = Swift.prepare_model(model, {'lora1': lora_config, 'lora2': lora_config2}) |
|
model.set_active_adapters('lora1') |
|
model.set_active_adapters('lora2') |
|
self.assertTrue(isinstance(model.classifier, ModulesToSaveWrapper)) |
|
self.assertTrue(model.classifier.active_adapter == 'lora2') |
|
model.save_pretrained(self.tmp_dir) |
|
state_dict = torch.load(os.path.join(self.tmp_dir, 'lora2', 'adapter_model.bin')) |
|
self.assertTrue(any('classifier' in key for key in state_dict)) |
|
state_dict['classifier.weight'] = torch.ones_like(state_dict['classifier.weight']) * 2.0 |
|
with open(os.path.join(self.tmp_dir, 'lora2', 'adapter_model.bin'), 'wb') as f: |
|
torch.save(state_dict, f) |
|
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base') |
|
model = Swift.from_pretrained(model, self.tmp_dir, adapter_name='lora2') |
|
names = [name for name, value in model.named_parameters() if value.requires_grad] |
|
self.assertTrue(any('classifier' in name for name in names)) |
|
self.assertTrue( |
|
torch.allclose(state_dict['classifier.weight'], |
|
model.base_model.classifier.modules_to_save['lora2'].weight)) |
|
|