Enxin's picture
Upload folder using huggingface_hub
96fe658 verified
# Copyright (c) Alibaba, Inc. and its affiliates.
# Part of the implementation is borrowed from huggingface/transformers.
import inspect
import logging
import os
import shutil
import time
from contextlib import contextmanager
from copy import copy
from functools import partial, wraps
from types import MethodType
from typing import Callable, Dict, List, Optional, Tuple, Union
import safetensors
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
import transformers
from datasets import Dataset as HfDataset
from modelscope import check_local_model_is_latest
from packaging import version
from peft import PeftModel
from torch.nn import Module
from torch.utils.data import DataLoader
from transformers import PreTrainedModel
from transformers.data.data_collator import DataCollator
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import unwrap_model
from transformers.trainer import TrainerCallback
from transformers.trainer_utils import EvalPrediction, IntervalStrategy
from transformers.utils import is_torch_npu_available
from swift.hub import get_hub
from swift.llm import BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, Template
from swift.llm.utils import update_generation_config_eos_token
from swift.plugin import MeanMetric, compute_acc, extra_tuners
from swift.tuners import SwiftModel
from swift.utils import get_logger, is_dist, is_mp, is_mp_ddp, ms_logger_context, seed_worker, get_data_timing_stats
from swift.utils.timing_utils import time_data_collate
from swift.utils.memory_utils import print_memory_timeline
from ..utils.torch_utils import get_device_count
from .arguments import TrainingArguments
from .utils import can_return_loss, find_labels, get_function, is_instance_of_ms_model
try:
from trl import AutoModelForCausalLMWithValueHead
except (ImportError, RuntimeError):
AutoModelForCausalLMWithValueHead = None
logger = get_logger()
class SwiftMixin:
def __init__(self,
model: Union[PreTrainedModel, Module] = None,
args: TrainingArguments = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[HfDataset] = None,
eval_dataset: Optional[Union[HfDataset, Dict[str, HfDataset]]] = None,
template: Optional[Template] = None,
model_init: Optional[Callable[[], PreTrainedModel]] = None,
compute_loss_func: Optional[Callable] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
**kwargs) -> None:
if not hasattr(train_dataset, '__len__') and args.dataloader_num_workers > 1:
args.dataloader_num_workers = 1
logger.warning('Using IterableDataset, setting args.dataloader_num_workers to 1.')
if args.check_model and hasattr(model, 'model_dir'):
with ms_logger_context(logging.CRITICAL):
check_local_model_is_latest(
model.model_dir, user_agent={
'invoked_by': 'local_trainer',
'third_party': 'swift',
})
if eval_dataset is None and args:
if getattr(args, 'eval_dataset', None):
# Avoid trainer throwing errors.
eval_dataset = []
else:
args.evaluation_strategy = IntervalStrategy.NO
args.eval_strategy = IntervalStrategy.NO
self._custom_metrics = {}
self.template = template
self.max_memory = 0
self.hub = get_hub()
self.model_meta = model.model_meta
with self.hub.patch_hub():
super().__init__(
model=model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=template.tokenizer,
model_init=model_init,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
**kwargs)
self.compute_loss_func = compute_loss_func
if get_function(model.__class__.forward) is not get_function(model.forward):
self.label_names = find_labels(model)
self.can_return_loss = can_return_loss(model)
self.label_names = self.label_names or ['labels']
self.start_time = time.time()
if self.template.sequence_parallel_size > 1:
from swift.trainers.sequence_parallel import sequence_parallel
sequence_parallel.prepare_trainer(self)
self._fix_gradient_checkpointing()
update_generation_config_eos_token(self.model.generation_config, self.template)
if getattr(self.model, 'origin_generation_config', None):
self.model.origin_generation_config.eos_token_id = self.model.generation_config.eos_token_id
if self.args.resume_only_model and self.args.ignore_data_skip:
# The weights have already been loaded outside the trainer,
# so reading train_state is skipped here.
self.args.resume_from_checkpoint = None
@contextmanager
def _patch_deepspeed_load_checkpoint(self):
from transformers import trainer
if not self.args.resume_from_checkpoint or not self.args.resume_only_model or not hasattr(
trainer, 'deepspeed_load_checkpoint'):
yield
return
origin_deepspeed_load_checkpoint = trainer.deepspeed_load_checkpoint
def deepspeed_load_checkpoint(*args, **kwargs):
try:
return origin_deepspeed_load_checkpoint(*args, **kwargs)
except Exception as e:
logger.warning('Failed to call deepspeed_load_checkpoint function. '
f'If `--resume_only_model true` is set, this warning can be ignored. {e}.')
trainer.deepspeed_load_checkpoint = deepspeed_load_checkpoint
try:
yield
finally:
trainer.deepspeed_load_checkpoint = origin_deepspeed_load_checkpoint
def get_use_logits_to_keep(self, default_value: bool = True):
use_logits_to_keep = self.args.use_logits_to_keep
if use_logits_to_keep is None:
base_model = self.template.get_base_model(self.model)
use_logits_to_keep = (not self.model.model_meta.is_multimodal
and 'logits_to_keep' in inspect.signature(base_model.forward).parameters
and default_value)
logger.info_once(f'use_logits_to_keep: {use_logits_to_keep}')
return use_logits_to_keep
def _save_initial_model(self, output_dir):
# pissa/olora/lora-ga
model = unwrap_model(self.model)
if isinstance(model, PeftModel):
config = model.peft_config.get('default')
init_lora_weights = getattr(config, 'init_lora_weights', None)
if (isinstance(init_lora_weights, str)
and any(s in init_lora_weights for s in ('pissa', 'olora', 'lora-ga'))):
config.init_lora_weights = True
model.save_pretrained(os.path.join(output_dir, 'initial_model'))
config.init_lora_weights = init_lora_weights
def _save_converted_model(self, output_dir):
# pissa/olora/lora-ga
model = unwrap_model(self.model)
if isinstance(model, PeftModel):
config = model.peft_config.get('default')
init_lora_weights = getattr(config, 'init_lora_weights', None)
if isinstance(init_lora_weights, str):
config = copy(config)
os.makedirs(os.path.join(output_dir, 'converted'), exist_ok=True)
if 'lora-ga' in init_lora_weights:
try:
from lora_ga.entrypoint import LoraGAContext
with LoraGAContext(model):
model.save_pretrained(
os.path.join(output_dir, 'converted', 'default'),
path_initial_model_for_weight_conversion=os.path.join(
os.path.dirname(output_dir), 'initial_model'),
)
model.peft_config['default'] = config
except ImportError as e:
error_message = """
Since 'LoRA-GA' is not implemented by PEFT, you will need to install it directly from GitHub.
Command: 'pip install git+https://github.com/lxline/LoRA-GA.git'.
"""
logger.info(error_message)
raise RuntimeError(error_message) from e
elif 'pissa' in init_lora_weights or 'olora' in init_lora_weights:
model.save_pretrained(
os.path.join(output_dir, 'converted', 'default'),
path_initial_model_for_weight_conversion=os.path.join(
os.path.dirname(output_dir), 'initial_model'),
)
model.peft_config['default'] = config
def _load_rng_state(self, *args, **kwargs):
if self.args.resume_only_model:
return
return super()._load_rng_state(*args, **kwargs)
def _load_optimizer_and_scheduler(self, *args, **kwargs):
if self.args.resume_only_model:
return
super()._load_optimizer_and_scheduler(*args, **kwargs)
if is_mp_ddp():
# fix mp+ddp adamw
for v in self.optimizer.state.values():
if 'step' in v:
# not on the same device
device_set = set([t.device for t in v.values()]) - {v['step'].device, torch.device('cpu')}
if len(device_set) >= 1:
v['step'] = v['step'].to('cpu')
def _save_model(self, output_dir: Optional[str] = None, state_dict=None):
# model
supported_classes = (SwiftModel, PreTrainedModel, PeftModel)
supported_names = ('SentenceTransformer', )
if AutoModelForCausalLMWithValueHead is not None:
supported_classes = supported_classes + (AutoModelForCausalLMWithValueHead, )
save_safetensors = self.args.save_safetensors
if not isinstance(self.model, supported_classes) and self.model.__class__.__name__ not in supported_names:
if state_dict is None:
state_dict = self.model.state_dict()
_unwrap_model = unwrap_model(self.model)
if isinstance(_unwrap_model, supported_classes):
_unwrap_model.save_pretrained(output_dir, state_dict=state_dict, safe_serialization=save_safetensors)
else:
logger.info('Trainer.model is not a `PreTrainedModel`, only saving its state dict.')
if save_safetensors:
safetensors.torch.save_file(state_dict, os.path.join(output_dir, 'model.safetensors'))
else:
torch.save(state_dict, os.path.join(output_dir, 'pytorch_model.bin'))
elif AutoModelForCausalLMWithValueHead and isinstance(self.model, AutoModelForCausalLMWithValueHead):
# save reward model
state_dict = self.model.state_dict()
decoder_state_dict, v_head_state_dict = {}, {}
for name, param in state_dict.items():
if name.startswith('v_head.'):
v_head_state_dict[name] = param
else:
decoder_state_dict[name.replace('pretrained_model.', '', 1)] = param
self.model.pretrained_model.save_pretrained(
output_dir, state_dict=decoder_state_dict or None, safe_serialization=save_safetensors)
if save_safetensors:
from safetensors.torch import save_file
save_file(
v_head_state_dict, os.path.join(output_dir, 'value_head.safetensors'), metadata={'format': 'pt'})
else:
torch.save(v_head_state_dict, os.path.join(output_dir, 'value_head.bin'))
elif is_instance_of_ms_model(self.model):
PreTrainedModel.save_pretrained(
self.model, output_dir, state_dict=state_dict, safe_serialization=save_safetensors)
elif self.args.train_type in extra_tuners:
extra_tuners[self.args.train_type].save_pretrained(
self.model, output_dir, state_dict=state_dict, safe_serialization=save_safetensors)
else:
if self.model.__class__.__name__ != 'SentenceTransformer':
self.model.save_pretrained(output_dir, state_dict=state_dict, safe_serialization=save_safetensors)
else:
@contextmanager
def save_context():
save_pretrained = self.model[0].auto_model.save_pretrained
_state_dict = {
key[len('0.auto_model.'):] if 'auto_model' in key else key: value
for key, value in state_dict.items()
}
self.model[0].auto_model.save_pretrained = partial(
self.model[0].auto_model.save_pretrained, state_dict=_state_dict)
yield
self.model[0].auto_model.save_pretrained = save_pretrained
with save_context():
self.model.save_pretrained(output_dir, safe_serialization=save_safetensors)
# copy sentencetransformers files
from swift.utils import copy_files_by_pattern
copy_files_by_pattern(
self.model.model_dir, output_dir, '*.py', exclude_patterns=['model.safetensors.index.json'])
copy_files_by_pattern(
self.model.model_dir, output_dir, '*.json', exclude_patterns=['model.safetensors.index.json'])
def _save(self, output_dir: Optional[str] = None, state_dict=None):
"""Compatible with swift and peft"""
# If we are executing this function, we are the process zero, so we don't check for that.
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
self._save_model(output_dir, state_dict)
# training_args.bin
torch.save(self.args, os.path.join(output_dir, 'training_args.bin'))
self._save_converted_model(output_dir)
# args.json
args_path = os.path.join(os.path.dirname(output_dir), 'args.json')
if os.path.exists(args_path):
shutil.copy(args_path, os.path.join(output_dir, 'args.json'))
# predict.jsonl
predict_jsonl = os.path.join(os.path.dirname(output_dir), 'predict.jsonl')
if os.path.exists(predict_jsonl):
shutil.move(predict_jsonl, os.path.join(output_dir, 'predict.jsonl'))
is_adapter = isinstance(self.model, (SwiftModel, PeftModel))
# tokenizer
if not is_adapter:
from swift.llm import save_checkpoint
additional_saved_files = self.model_meta.additional_saved_files
save_checkpoint(
None,
self.template.processor,
output_dir,
model_dirs=[self.model.model_dir],
additional_saved_files=additional_saved_files)
if getattr(self.model, 'origin_generation_config', None):
self.model.origin_generation_config.save_pretrained(output_dir)
def _fix_zero3_gather_all_parameters(self) -> None:
if is_deepspeed_zero3_enabled() and not hasattr(self.deepspeed, '_zero3_consolidated_16bit_state_dict_origin'):
parameters = inspect.signature(self.deepspeed._zero3_consolidated_16bit_state_dict).parameters
if 'exclude_frozen_parameters' in parameters:
def _zero3_consolidated_16bit_state_dict(model, exclude_frozen_parameters=False):
unwrapped = unwrap_model(model)
exclude_frozen_parameters = False
if isinstance(unwrapped, SwiftModel) and unwrapped.has_additional_modules:
exclude_frozen_parameters = True
if isinstance(unwrapped, PeftModel):
exclude_frozen_parameters = True
return model._zero3_consolidated_16bit_state_dict_origin(exclude_frozen_parameters)
self.deepspeed._zero3_consolidated_16bit_state_dict_origin = (
self.deepspeed._zero3_consolidated_16bit_state_dict)
self.deepspeed._zero3_consolidated_16bit_state_dict = MethodType(_zero3_consolidated_16bit_state_dict,
self.deepspeed)
def _save_checkpoint(self, *args, **kwargs):
self.state.last_model_checkpoint = os.path.join(self.args.output_dir, f'checkpoint-{self.state.global_step}')
self._fix_zero3_gather_all_parameters()
result = super()._save_checkpoint(*args, **kwargs)
logger.info(f'Saving model checkpoint to {self.state.last_model_checkpoint}')
return result
@staticmethod
@contextmanager
def _fix_grad_norm_nan():
from accelerate import Accelerator
origin_clip_grad_norm_ = Accelerator.clip_grad_norm_
def clip_grad_norm_(self, parameters, *args, **kwargs):
# If NaN occurs, ignore weight updates.
parameters = list(parameters)
grad_norm = origin_clip_grad_norm_(self, parameters, *args, **kwargs)
if isinstance(grad_norm, torch.Tensor) and grad_norm.isnan().item():
for p in parameters:
p.grad = None
return grad_norm
Accelerator.clip_grad_norm_ = clip_grad_norm_
try:
yield
finally:
Accelerator.clip_grad_norm_ = origin_clip_grad_norm_
def _fix_gradient_checkpointing(self):
# fix use_reentrant
if hasattr(torch.utils.checkpoint, '_old_checkpoint'): # avoid double patching
return
args = self.args
if args.gradient_checkpointing_kwargs:
use_reentrant_ = args.gradient_checkpointing_kwargs.get('use_reentrant')
else:
use_reentrant_ = None
if use_reentrant_ is None:
if is_dist() and not self.is_deepspeed_enabled and not self.is_fsdp_enabled:
use_reentrant_ = False
else:
use_reentrant_ = True
logger.info(f'use_reentrant: {use_reentrant_}')
_old_checkpoint = torch.utils.checkpoint.checkpoint
@wraps(_old_checkpoint)
def _new_checkpoint(*args, use_reentrant=None, **kwargs):
return _old_checkpoint(*args, use_reentrant=use_reentrant_, **kwargs)
torch.utils.checkpoint._old_checkpoint = _old_checkpoint
torch.utils.checkpoint.checkpoint = _new_checkpoint
try:
# Fix the old version of transformers.
import transformers.modeling_utils
transformers.modeling_utils.checkpoint = _new_checkpoint
except (ImportError, AttributeError):
pass
def _prepare_gradient_checkpointing(self, model) -> None:
from swift.llm import HfConfigFactory, get_model_arch, deep_getattr, dynamic_gradient_checkpointing
args = self.args
HfConfigFactory.set_model_config_attr(model, 'use_cache', False)
if args.gradient_checkpointing or args.vit_gradient_checkpointing:
dynamic_gradient_checkpointing(model, args.vit_gradient_checkpointing)
gc_kwargs = {}
parameters = inspect.signature(model.gradient_checkpointing_enable).parameters
if 'gradient_checkpointing_kwargs' in parameters:
gc_kwargs['gradient_checkpointing_kwargs'] = args.gradient_checkpointing_kwargs
if args.gradient_checkpointing:
model.gradient_checkpointing_enable(**gc_kwargs)
model.enable_input_require_grads()
model_meta = model.model_meta
model_arch = get_model_arch(model_meta.model_arch)
if model_meta.is_multimodal and model_arch:
for vision_tower_name in model_arch.vision_tower:
vision_tower = deep_getattr(model, vision_tower_name)
if hasattr(vision_tower, 'enable_input_require_grads'):
try:
if args.vit_gradient_checkpointing:
vision_tower.gradient_checkpointing_enable(**gc_kwargs)
vision_tower.enable_input_require_grads()
else:
vision_tower.gradient_checkpointing_disable()
vision_tower.disable_input_require_grads()
except (NotImplementedError, AttributeError):
pass
# Avoid vit_gradient_checkpointing being overwritten by transformers.Trainer.gradient_checkpointing_enable.
self.args.gradient_checkpointing = False
def train(self, *args, **kwargs):
if self.model_meta.is_multimodal:
models = []
for model_name in ['model', 'ref_model', 'value_model', 'teacher_model']:
model = getattr(self, model_name, None)
if isinstance(model, nn.Module):
models.append(model)
reward_model = getattr(self, 'reward_model', None)
if reward_model is not None:
if isinstance(reward_model, list):
models.extend([m for m in reward_model if isinstance(m, nn.Module)])
elif isinstance(reward_model, nn.Module):
models.append(reward_model)
models = list(set(self.accelerator.unwrap_model(model) for model in models)) # Deduplicate
self.template.register_post_encode_hook(models)
logger.info(f'Successfully registered post_encode hook: {[model.__class__.__name__ for model in models]}.')
self._save_initial_model(self.args.output_dir)
# gradient_checkpointing
gradient_checkpointing = self.args.gradient_checkpointing
self._prepare_gradient_checkpointing(self.accelerator.unwrap_model(self.model))
with self.hub.patch_hub(), self._fix_grad_norm_nan(), self._patch_skip_first_batches(
), self._patch_deepspeed_load_checkpoint():
res = super().train(*args, **kwargs)
# 训练结束后打印时间统计总结和内存时间线
self._print_timing_summary()
print_memory_timeline()
self.template.remove_post_encode_hook()
self.args.gradient_checkpointing = gradient_checkpointing # recover
return res
def push_to_hub(self, *args, **kwargs):
with self.hub.patch_hub():
return super().push_to_hub(*args, **kwargs)
def get_max_cuda_memory(self, device: Optional[Union[torch.device, int]] = None) -> float:
if device is None:
mems = [torch.cuda.max_memory_reserved(device=device) for device in range(get_device_count())]
else:
mems = [torch.cuda.max_memory_reserved(device=device)]
mem = sum(mems) / 1024**3
self.max_memory = max(self.max_memory, mem)
return mem
def _maybe_log_save_evaluate(self, tr_loss, *args, **kwargs):
if self.control.should_log and self.state.global_step > self._globalstep_last_logged:
self.control.should_log = False
# all_gather + mean() to get average loss over all processes
tr_loss_scalar = self._nested_gather(tr_loss).mean().item()
loss = tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged)
logs: Dict[str, float] = {'loss': loss} # loss first
for k, metric in self._custom_metrics.items():
value = metric.compute()
if len(value) == 1:
val = list(value.values())[0]
logs[k] = val
else:
for k_suffix, val in value.items():
new_k = f'{k}_{k_suffix}'
logs[new_k] = val
metric.reset()
if version.parse(transformers.__version__) >= version.parse('4.38'):
grad_norm = args[0]
if grad_norm is not None:
logs['grad_norm'] = grad_norm.item() if isinstance(grad_norm, torch.Tensor) else grad_norm
logs['learning_rate'] = self._get_learning_rate()
if not is_torch_npu_available():
logs['memory(GiB)'] = round(self.get_max_cuda_memory(), 2)
elapse_time = time.time() - self.start_time
logs['train_speed(iter/s)'] = round(self.state.global_step / elapse_time, 6)
for k in list(logs.keys()):
if logs[k] is None:
logs.pop(k)
tr_loss -= tr_loss
self._total_loss_scalar += tr_loss_scalar
self._globalstep_last_logged = self.state.global_step
self.store_flos()
self.log(logs)
if self.args.eval_use_evalscope and self.control.should_evaluate:
self._evalscope_eval()
if not self.eval_dataset:
self.control.should_evaluate = False
super()._maybe_log_save_evaluate(tr_loss, *args, **kwargs)
def create_optimizer_and_scheduler(self, num_training_steps: int):
if self.args.optimizer is not None:
from swift.plugin import optimizers_map
optimizer_callback = optimizers_map[self.args.optimizer]
self.optimizer, self.lr_scheduler = optimizer_callback(self.args, self.model, self.train_dataset)
if self.optimizer is None:
self.create_optimizer()
if self.lr_scheduler is None:
self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
else:
super().create_optimizer_and_scheduler(num_training_steps=num_training_steps)
def _compute_acc(self, outputs, labels) -> None:
args = self.args
preds = outputs.logits.argmax(dim=-1)
metrics = compute_acc(
preds, labels, acc_strategy=args.acc_strategy, is_encoder_decoder=self.template.is_encoder_decoder)
for k, v in metrics.items():
if k not in self._custom_metrics:
self._custom_metrics[k] = MeanMetric(nan_value=None)
self._custom_metrics[k].update(v)
@torch.no_grad()
def _evalscope_eval(self):
from ..llm.eval.utils import EvalModel
from evalscope import TaskConfig, run_task
from evalscope.constants import EvalType
self.model.eval()
max_batch_size = self.args.per_device_eval_batch_size
custom_model = EvalModel(
self.model, self.template, max_batch_size=max_batch_size, model_name=f'model-step{self.state.global_step}')
task_config = TaskConfig(
model=custom_model,
eval_type=EvalType.CUSTOM,
datasets=self.args.eval_dataset,
dataset_args=self.args.eval_dataset_args,
limit=self.args.eval_limit,
work_dir=os.path.join(self.args.output_dir, 'eval'),
eval_batch_size=max_batch_size,
generation_config=self.args.eval_generation_config or {'max_tokens': 512},
)
# start evaluation
eval_report = run_task(task_config)
# convert to dict
eval_dict = {f'test_{k}': v.score for k, v in eval_report.items()}
self.log(eval_dict)
self.model.train()
return eval_dict
def get_logits_to_keep(self, labels):
if labels.shape[0] == 1 and not is_mp():
# device_map may encounter device mismatch issues.
loss_mask = (labels != -100)[0]
labels = labels[:, loss_mask]
labels = nn.functional.pad(labels, (1, 0), value=-100)
logits_to_keep = nn.functional.pad(loss_mask[1:], (0, 1), value=True)
else:
logits_to_keep = labels.shape[-1] - ((labels != -100).int().argmax(-1).min().item()) + 1
assert logits_to_keep > 0
labels = labels[:, -logits_to_keep:]
return labels, logits_to_keep
def get_cu_seqlens(self, position_ids, logits_to_keep) -> torch.Tensor:
assert position_ids.shape[0] == 1
position_ids = position_ids[0]
indices = torch.arange(position_ids.shape[0], device=position_ids.device)
cu_seqlens = torch.concat([
indices[position_ids == 0],
torch.tensor(position_ids.shape, device=position_ids.device),
])
res_cu_seqlens = cu_seqlens.clone()
if isinstance(logits_to_keep, torch.Tensor):
for i in range(cu_seqlens.shape[0] - 1):
start, end = cu_seqlens[i], cu_seqlens[i + 1]
res_cu_seqlens[i + 1:] -= (~logits_to_keep[start:end]).sum()
elif isinstance(logits_to_keep, int):
res_cu_seqlens[1:] -= position_ids.shape[0] + 1 - logits_to_keep
return res_cu_seqlens
def get_batch_samples(self, *args, **kwargs):
res = super().get_batch_samples(*args, **kwargs)
from swift.trainers.sequence_parallel import sequence_parallel
if (self.template.sequence_parallel_size == 1 or 'Ulysses' == sequence_parallel.__class__.__name__
or 'RingAttention' == sequence_parallel.__class__.__name__):
# ulysses and ring attention split inputs in the model hook, so no need to gather num_items_in_batch
return res
batch_samples, num_items_in_batch = res
if num_items_in_batch is None:
num_items_in_batch = torch.tensor(0).to(args[2])
from swift.trainers.sequence_parallel import sequence_parallel
dist.all_reduce(num_items_in_batch, dist.ReduceOp.SUM, sequence_parallel.sp_group)
return batch_samples, num_items_in_batch
@contextmanager
def _patch_skip_first_batches(self):
from transformers import trainer
origin_skip_first_batches = trainer.skip_first_batches
def skip_first_batches(dataloader, num_batches=0):
if isinstance(dataloader, (DataLoaderShard, DataLoaderDispatcher)):
# DataLoaderMixin
return self.get_train_dataloader(skip_batches=num_batches)
else:
return origin_skip_first_batches(dataloader, num_batches)
trainer.skip_first_batches = skip_first_batches
try:
yield
finally:
trainer.skip_first_batches = origin_skip_first_batches
class DataLoaderMixin:
def get_train_dataloader(self, skip_batches=0):
dataloader = None
if self.template.sequence_parallel_size > 1:
from swift.trainers.sequence_parallel import sequence_parallel
dataloader = sequence_parallel.get_dataloader(
self, self.train_dataset, self._train_batch_size, skip_batches=skip_batches)
if dataloader is None:
# Higher efficiency
if self.train_dataset is None:
raise ValueError('Trainer: training requires a train_dataset.')
args = self.args
train_dataset = self.train_dataset
# 为 data_collator 添加时间测量装饰器
timed_collate_fn = time_data_collate(self.data_collator)
dataloader_params = {
'collate_fn': timed_collate_fn,
'num_workers': args.dataloader_num_workers,
'pin_memory': args.dataloader_pin_memory,
'persistent_workers': args.dataloader_persistent_workers,
'prefetch_factor': args.dataloader_prefetch_factor
}
batch_sampler_params = {
'drop_last':
args.dataloader_drop_last,
'shuffle':
args.train_dataloader_shuffle,
'data_seed':
args.data_seed,
'tp_size':
args.deepspeed['tensor_parallel']['autotp_size']
if args.deepspeed and 'tensor_parallel' in args.deepspeed else 1,
}
if hasattr(train_dataset, '__len__'):
batch_sampler = BatchSamplerShard(
len(train_dataset), batch_size=self._train_batch_size, **batch_sampler_params)
dataloader_params['worker_init_fn'] = partial(
seed_worker, num_workers=self.args.dataloader_num_workers, rank=self.args.process_index)
if skip_batches > 0:
from accelerate.data_loader import SkipBatchSampler
batch_sampler = SkipBatchSampler(batch_sampler, skip_batches=skip_batches)
dataloader_params['batch_sampler'] = batch_sampler
dataloader = DataLoaderShard(train_dataset, device=self.accelerator.device, **dataloader_params)
else:
# IterableDataset
if dist.is_initialized() and dataloader_params['prefetch_factor']:
dataloader_params['prefetch_factor'] = dataloader_params['prefetch_factor'] * dist.get_world_size()
dataloader = DataLoader(train_dataset, batch_size=self._train_batch_size, **dataloader_params)
dataloader = DataLoaderDispatcher(dataloader, self.accelerator.device, skip_batches=skip_batches)
return dataloader
def _print_timing_summary(self):
"""打印训练时间统计总结"""
logger.info("\n" + "="*60)
logger.info("TRAINING TIMING SUMMARY")
logger.info("="*60)
# 数据处理时间统计
data_stats = get_data_timing_stats()
if data_stats['batch_count'] > 0:
logger.info(f"DATA PROCESSING:")
logger.info(f" Total Batches Processed: {data_stats['batch_count']}")
logger.info(f" Average Collate Time: {data_stats['avg_collate_time']:.4f}s")
logger.info(f" Average Preprocessing Time: {data_stats['avg_preprocessing_time']:.4f}s")
logger.info(f" Total Collate Time: {data_stats['total_collate_time']:.4f}s")
logger.info(f" Total Preprocessing Time: {data_stats['total_preprocessing_time']:.4f}s")
# 训练步骤统计
if hasattr(self, 'step_count') and self.step_count > 0:
total_train_time = time.time() - self.start_time
avg_step_time = total_train_time / self.step_count
logger.info(f"TRAINING STEPS:")
logger.info(f" Total Training Steps: {self.step_count}")
logger.info(f" Average Step Time: {avg_step_time:.4f}s")
logger.info(f" Total Training Time: {total_train_time:.2f}s")
if hasattr(self, 'last_forward_time'):
logger.info(f" Last Forward Pass Time: {self.last_forward_time:.4f}s")
# GPU内存峰值
if torch.cuda.is_available():
max_memory = self.get_max_cuda_memory()
logger.info(f"GPU MEMORY:")
logger.info(f" Peak Memory Usage: {max_memory:.2f}GB")
logger.info("="*60)
def get_eval_dataloader(self, eval_dataset=None):
dataloader = None
if self.template.sequence_parallel_size > 1:
from swift.trainers.sequence_parallel import sequence_parallel
if eval_dataset is None and self.eval_dataset is None:
raise ValueError('Trainer: evaluation requires an eval_dataset.')
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
dataloader = sequence_parallel.get_dataloader(self, eval_dataset, self.args.eval_batch_size)
if dataloader is None:
return super().get_eval_dataloader(eval_dataset=eval_dataset)
return dataloader