Enxin's picture
Upload folder using huggingface_hub
96fe658 verified
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
from typing import List, Literal
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def infer_batch(engine: 'InferEngine', infer_requests: List['InferRequest']):
request_config = RequestConfig(max_tokens=512, temperature=0)
metric = InferStats()
resp_list = engine.infer(infer_requests, request_config, metrics=[metric])
query0 = infer_requests[0].messages[0]['content']
print(f'query0: {query0}')
print(f'response0: {resp_list[0].choices[0].message.content}')
print(f'metric: {metric.compute()}')
# metric.reset() # reuse
def infer_stream(engine: 'InferEngine', infer_request: 'InferRequest'):
request_config = RequestConfig(max_tokens=512, temperature=0, stream=True)
metric = InferStats()
gen_list = engine.infer([infer_request], request_config, metrics=[metric])
query = infer_request.messages[0]['content']
print(f'query: {query}\nresponse: ', end='')
for resp in gen_list[0]:
if resp is None:
continue
print(resp.choices[0].delta.content, end='', flush=True)
print()
print(f'metric: {metric.compute()}')
def get_message(mm_type: Literal['text', 'image', 'video', 'audio']):
if mm_type == 'text':
message = {'role': 'user', 'content': 'who are you?'}
elif mm_type == 'image':
message = {
'role':
'user',
'content': [
{
'type': 'image',
# url or local_path or PIL.Image or base64
'image': 'http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/animal.png'
},
{
'type': 'text',
'text': 'How many sheep are there in the picture?'
}
]
}
elif mm_type == 'video':
message = {
'role':
'user',
'content': [{
'type': 'video',
'video': 'https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/baby.mp4'
}, {
'type': 'text',
'text': 'Describe this video.'
}]
}
elif mm_type == 'audio':
message = {
'role':
'user',
'content': [{
'type': 'audio',
'audio': 'http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/weather.wav'
}, {
'type': 'text',
'text': 'What does this audio say?'
}]
}
return message
def get_data(mm_type: Literal['text', 'image', 'video', 'audio']):
data = {}
if mm_type == 'text':
messages = [{'role': 'user', 'content': 'who are you?'}]
elif mm_type == 'image':
# The number of <image> tags must be the same as len(images).
messages = [{'role': 'user', 'content': '<image>How many sheep are there in the picture?'}]
# Support URL/Path/base64/PIL.Image
data['images'] = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/animal.png']
elif mm_type == 'video':
messages = [{'role': 'user', 'content': '<video>Describe this video.'}]
data['videos'] = ['https://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/baby.mp4']
elif mm_type == 'audio':
messages = [{'role': 'user', 'content': '<audio>What does this audio say?'}]
data['audios'] = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/weather.wav']
data['messages'] = messages
return data
if __name__ == '__main__':
# The inference of the trained model can be referred to as:
# https://github.com/modelscope/ms-swift/tree/main/examples/notebook
from swift.llm import InferEngine, InferRequest, PtEngine, RequestConfig, load_dataset
from swift.plugin import InferStats
infer_backend = 'pt'
if infer_backend == 'pt':
model = 'Qwen/Qwen2-Audio-7B-Instruct'
mm_type = 'audio'
engine = PtEngine(model, max_batch_size=64)
elif infer_backend == 'vllm':
# test env: vllm==0.8.5.post1, transformers==4.51.3
# The meaning of environment variables can be found at:
# https://swift.readthedocs.io/zh-cn/latest/Instruction/%E5%91%BD%E4%BB%A4%E8%A1%8C%E5%8F%82%E6%95%B0.html#id17
from swift.llm import VllmEngine
os.environ['MAX_PIXELS'] = '1003520'
os.environ['VIDEO_MAX_PIXELS'] = '50176'
os.environ['FPS_MAX_FRAMES'] = '12'
model = 'Qwen/Qwen2.5-VL-3B-Instruct'
# If you encounter insufficient GPU memory, please reduce `max_model_len` and set `max_num_seqs=5`.
engine = VllmEngine(model, max_model_len=8192, limit_mm_per_prompt={'image': 5, 'video': 2})
mm_type = 'image' # or 'video'
elif infer_backend == 'lmdeploy':
# test env: lmdeploy==0.7.1
from swift.llm import LmdeployEngine
model = 'OpenGVLab/InternVL2_5-1B'
engine = LmdeployEngine(model, vision_batch_size=8)
mm_type = 'image' # or 'video'
# infer dataset
if mm_type == 'audio':
dataset = 'speech_asr/speech_asr_aishell1_trainsets:validation#1000'
elif mm_type == 'image':
dataset = 'AI-ModelScope/LaTeX_OCR:small#1000'
elif mm_type == 'video':
dataset = 'swift/VideoChatGPT:Generic#100'
# Here, `load_dataset` is used for convenience; `infer_batch` does not require creating a dataset.
dataset = load_dataset([dataset], seed=42)[0]
print(f'dataset: {dataset}')
infer_requests = [InferRequest(**data) for data in dataset]
infer_batch(engine, infer_requests)
infer_stream(engine, InferRequest(messages=[get_message(mm_type)]))
# This writing is equivalent to the above writing.
infer_stream(engine, InferRequest(**get_data(mm_type)))