Enkhbold commited on
Commit
cf7b912
1 Parent(s): 189b32b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ license: mit
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: mongolian-xlm-roberta-base-demo
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # mongolian-xlm-roberta-base-demo
21
+
22
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1177
25
+ - Precision: 0.9262
26
+ - Recall: 0.9332
27
+ - F1: 0.9297
28
+ - Accuracy: 0.9785
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 10
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.1979 | 1.0 | 477 | 0.1015 | 0.8713 | 0.8958 | 0.8834 | 0.9692 |
60
+ | 0.0839 | 2.0 | 954 | 0.0965 | 0.9050 | 0.9125 | 0.9088 | 0.9743 |
61
+ | 0.0604 | 3.0 | 1431 | 0.0844 | 0.9217 | 0.9258 | 0.9237 | 0.9771 |
62
+ | 0.0455 | 4.0 | 1908 | 0.0955 | 0.9154 | 0.9283 | 0.9218 | 0.9774 |
63
+ | 0.0337 | 5.0 | 2385 | 0.0923 | 0.9228 | 0.9318 | 0.9273 | 0.9787 |
64
+ | 0.0254 | 6.0 | 2862 | 0.1055 | 0.9213 | 0.9303 | 0.9258 | 0.9776 |
65
+ | 0.02 | 7.0 | 3339 | 0.1075 | 0.9244 | 0.9329 | 0.9286 | 0.9785 |
66
+ | 0.0149 | 8.0 | 3816 | 0.1142 | 0.9262 | 0.9329 | 0.9295 | 0.9788 |
67
+ | 0.0126 | 9.0 | 4293 | 0.1149 | 0.9219 | 0.9306 | 0.9262 | 0.9780 |
68
+ | 0.01 | 10.0 | 4770 | 0.1177 | 0.9262 | 0.9332 | 0.9297 | 0.9785 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.29.2
74
+ - Pytorch 2.0.1+cu118
75
+ - Datasets 2.12.0
76
+ - Tokenizers 0.13.3