update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- mn
|
4 |
+
license: mit
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: mongolian-xlm-roberta-base-demo
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# mongolian-xlm-roberta-base-demo
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1177
|
25 |
+
- Precision: 0.9262
|
26 |
+
- Recall: 0.9332
|
27 |
+
- F1: 0.9297
|
28 |
+
- Accuracy: 0.9785
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 16
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.1979 | 1.0 | 477 | 0.1015 | 0.8713 | 0.8958 | 0.8834 | 0.9692 |
|
60 |
+
| 0.0839 | 2.0 | 954 | 0.0965 | 0.9050 | 0.9125 | 0.9088 | 0.9743 |
|
61 |
+
| 0.0604 | 3.0 | 1431 | 0.0844 | 0.9217 | 0.9258 | 0.9237 | 0.9771 |
|
62 |
+
| 0.0455 | 4.0 | 1908 | 0.0955 | 0.9154 | 0.9283 | 0.9218 | 0.9774 |
|
63 |
+
| 0.0337 | 5.0 | 2385 | 0.0923 | 0.9228 | 0.9318 | 0.9273 | 0.9787 |
|
64 |
+
| 0.0254 | 6.0 | 2862 | 0.1055 | 0.9213 | 0.9303 | 0.9258 | 0.9776 |
|
65 |
+
| 0.02 | 7.0 | 3339 | 0.1075 | 0.9244 | 0.9329 | 0.9286 | 0.9785 |
|
66 |
+
| 0.0149 | 8.0 | 3816 | 0.1142 | 0.9262 | 0.9329 | 0.9295 | 0.9788 |
|
67 |
+
| 0.0126 | 9.0 | 4293 | 0.1149 | 0.9219 | 0.9306 | 0.9262 | 0.9780 |
|
68 |
+
| 0.01 | 10.0 | 4770 | 0.1177 | 0.9262 | 0.9332 | 0.9297 | 0.9785 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.29.2
|
74 |
+
- Pytorch 2.0.1+cu118
|
75 |
+
- Datasets 2.12.0
|
76 |
+
- Tokenizers 0.13.3
|