Emperor-WS's picture
Initial commit
e33bb2d
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
"__module__": "stable_baselines3.td3.policies",
"__annotations__": "{'actor': <class 'stable_baselines3.td3.policies.Actor'>, 'actor_target': <class 'stable_baselines3.td3.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
"__init__": "<function TD3Policy.__init__ at 0x7ae480dae4d0>",
"_build": "<function TD3Policy._build at 0x7ae480dae560>",
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7ae480dae5f0>",
"make_actor": "<function TD3Policy.make_actor at 0x7ae480dae680>",
"make_critic": "<function TD3Policy.make_critic at 0x7ae480dae710>",
"forward": "<function TD3Policy.forward at 0x7ae480dae7a0>",
"_predict": "<function TD3Policy._predict at 0x7ae480dae830>",
"set_training_mode": "<function TD3Policy.set_training_mode at 0x7ae480dae8c0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7ae480db0b40>"
},
"verbose": 1,
"policy_kwargs": {
"net_arch": [
400,
300
]
},
"num_timesteps": 1000339,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": {
":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
":serialized:": "gAWVOgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwaFlIwBQ5R0lFKUjAZfc2lnbWGUaAgoljAAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgPSwaFlGgTdJRSlHViLg==",
"_mu": "[0. 0. 0. 0. 0. 0.]",
"_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1]"
},
"start_time": 1672252945185227909,
"learning_rate": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"tensorboard_log": "runs/Walker2DBulletEnv-v0__td3__1035828328__1672252942/Walker2DBulletEnv-v0",
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAA2MpL4AAAAAAACAPzNdZD8AAAAAlMjeuwAAAAAVNFO/NHf8u/z5Db7DPNY+K7sePnxtAj4V7jS/FgCAPyYZWre4gEm9RluovZkEgD9fXUS6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLFoaUjAFDlHSUUpQu"
},
"_episode_num": 2796,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.00033900000000008923,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFbueZof0VeMAWyUSzyMAXSUR0Cv9mqsMiKSdX2UKGgGR0CgQfKSowVTaAdNdANoCEdAr/hJCrtE5XV9lChoBkdAozFAcrAgxWgHTegDaAhHQLAAHRGMGX51fZQoaAZHQKNT+E3bVSZoB03oA2gIR0CwBI1Z9uxbdX2UKGgGR0Ci5HdehPCVaAdN6ANoCEdAsAj8ksz2vnV9lChoBkdAoyIwwPAfuGgHTegDaAhHQLANbWjGkvd1fZQoaAZHQKLD9lK9PDZoB03oA2gIR0CwEdzcVQANdX2UKGgGR0Ch6666z3RHaAdN6ANoCEdAsBZOJsO5KHV9lChoBkdAogtOqtHQQmgHTegDaAhHQLAatBqKxcF1fZQoaAZHQKHVOOyVv/BoB03oA2gIR0CwIvS4Wk8BdX2UKGgGR0Cc52jfNzKcaAdN9gJoCEdAsCcvMEA5rHV9lChoBkdAoy6QcFQl8mgHTegDaAhHQLAqv9vjwQV1fZQoaAZHQKK99W912aFoB03oA2gIR0CwLy+3Ytg8dX2UKGgGR0CjMgu14Pf9aAdN6ANoCEdAsDObDXOGCnV9lChoBkdAo3N2sLfDUGgHTegDaAhHQLA4BlvqC6J1fZQoaAZHQKIH86ltTDRoB03oA2gIR0CwPGm0Re1KdX2UKGgGR0CL4mgs9SuRaAdNdgFoCEdAsEBKZAprlHV9lChoBkdAo5xL/EOy3WgHTegDaAhHQLBCczFdcB51fZQoaAZHQKNdBmTTvy9oB03oA2gIR0CwRuOHJtBOdX2UKGgGR0CiVXh2OhkBaAdNvwNoCEdAsEtKNaQmu3V9lChoBkdAoofuOMl1KWgHTegDaAhHQLBPlYVIqb11fZQoaAZHQKN2n4TK1XxoB03oA2gIR0CwU/25tm+TdX2UKGgGR0Cjicmgam4zaAdN6ANoCEdAsFhtQ/HHWHV9lChoBkdAo3dc/SpiqmgHTegDaAhHQLBcyqlxffJ1fZQoaAZHQKMK5b1RLsdoB03oA2gIR0CwYSUSElE7dX2UKGgGR0Cj0P0kv9LpaAdN6ANoCEdAsGWHHbRF7XV9lChoBkdAovUlSXMQmWgHTegDaAhHQLBp6e1a4c51fZQoaAZHQKLJp7SiM5xoB03oA2gIR0CwblJJkGzKdX2UKGgGR0CjnG3QUpNLaAdN6ANoCEdAsHLB5UtI1HV9lChoBkdAnWLX4O+ZgGgHTQoDaAhHQLB2/GvwEyN1fZQoaAZHQKNMrsiSq2loB03kA2gIR0CwepWuDBdldX2UKGgGR0CjKfsN2C/XaAdN6ANoCEdAsH72sHSncnV9lChoBkdAoxnaThYNiGgHTegDaAhHQLCDXB6a9bp1fZQoaAZHQKNvCh3aBZpoB03oA2gIR0Cwh8qr/82rdX2UKGgGR0CjS4sYl6Z6aAdN6ANoCEdAsIw7HxSYPXV9lChoBkdAoyHmgUUO/mgHTegDaAhHQLCUoSsr/bV1fZQoaAZHQKLuBFGXokloB03oA2gIR0CwmRJKaodddX2UKGgGR0CTvq2x6fJ4aAdNDAJoCEdAsJ0S2TgVGnV9lChoBkdAo2TT7uUliWgHTegDaAhHQLCfw4AS39d1fZQoaAZHQKOhbT72tdRoB03oA2gIR0CwpCRkNFz/dX2UKGgGR0CjJFkhaC+UaAdN6ANoCEdAsKiVi9ZieHV9lChoBkdAox6nAoG6gGgHTegDaAhHQLCtBnwG4Zx1fZQoaAZHQKMiZKGL1mJoB03oA2gIR0CwsXbNnoPkdX2UKGgGR0BbqT72tdRjaAdLQWgIR0CwtRwmE5AAdX2UKGgGR0Ciz4bLdN34aAdN6ANoCEdAsLYyU1Q663V9lChoBkdAoo2S4J/oaGgHTegDaAhHQLC6oAIppex1fZQoaAZHQFciQOWjXWhoB0s5aAhHQLC+PEzwc5t1fZQoaAZHQI896raM72doB023AWgIR0Cwvs1XA/LUdX2UKGgGR0CjYEX/giu/aAdN6ANoCEdAsMEx8Sf16HV9lChoBkdAotYOVLSNO2gHTegDaAhHQLDFnbM5fdB1fZQoaAZHQFnaRZEDyOJoB0s6aAhHQLDJXGEPDpF1fZQoaAZHQKL+sq4H5ahoB03oA2gIR0CwymyDM/yHdX2UKGgGR0Ci5o7rs0HhaAdN6ANoCEdAsM75l6JIlXV9lChoBkdAoqpgC8vmHWgHTegDaAhHQLDTg5le4Td1fZQoaAZHQKKfvYjB2wFoB03oA2gIR0Cw2A9V7x/edX2UKGgGR0CjHiP9tMwlaAdN6ANoCEdAsNyOdZq20HV9lChoBkdAXAhedCmdiGgHS0ZoCEdAsOBLM2WIGnV9lChoBkdAopDK35N47mgHTegDaAhHQLDhX2i+L3t1fZQoaAZHQKLgb02cawVoB03oA2gIR0Cw5eJnctXgdX2UKGgGR0Cjouy8BdUsaAdN6ANoCEdAsOpx7rs0HnV9lChoBkdAopvBRVIZqGgHTegDaAhHQLDu/YiPhhp1fZQoaAZHQKKN9RqoIfNoB03oA2gIR0Cw84aGDcubdX2UKGgGR0B0Yke+23KCaAdLtGgIR0Cw91yOaOPvdX2UKGgGR0CQh2jBl+VkaAdNwwFoCEdAsPhpHavicXV9lChoBkdAos5x9w3o92gHTegDaAhHQLD67cVxjrl1fZQoaAZHQKMb97MPjGVoB03oA2gIR0Cw/20Zm7J5dX2UKGgGR0CiwtisOoYOaAdN6ANoCEdAsQPsZ/CqInV9lChoBkdAfSchy8zyjGgHS+VoCEdAsQjLNke6qnV9lChoBkdAoZZ++wkgOmgHTegDaAhHQLEKfnL7oB91fZQoaAZHQH7VTCHh0hhoB0vqaAhHQLEOYvbGm1p1fZQoaAZHQKJkcYGdI5JoB03oA2gIR0CxEBnuiN83dX2UKGgGR0CO10FzuF6BaAdNswFoCEdAsRQr6+FlCnV9lChoBkdAof+cx7AtWmgHTegDaAhHQLEWoVuaWop1fZQoaAZHQKLwXyEL6UJoB03oA2gIR0CxGyumzjWDdX2UKGgGR0BlZfek56t1aAdLZWgIR0CxHuzPSlWPdX2UKGgGR0CR5Kc8kleGaAdNAAJoCEdAsR+4uVX3g3V9lChoBkdAkeqxkAggYGgHTfQBaAhHQLEiA8v24/h1fZQoaAZHQKL6fF98Z1poB03oA2gIR0CxJK0OI68ydX2UKGgGR0CjYdFV1fVqaAdN6ANoCEdAsSk3FhoduHV9lChoBkdAo0Hyk43m3mgHTegDaAhHQLEtwJiiItV1fZQoaAZHQKKjmjjaPCFoB03oA2gIR0CxMjsFQl8gdX2UKGgGR0Cju/wqI7/5aAdN6ANoCEdAsTar003wTnV9lChoBkdAozGzIgeRxWgHTegDaAhHQLE7HY6GQCF1fZQoaAZHQGKTxcu8K5VoB0tRaAhHQLE+wivgWJt1fZQoaAZHQKNkRWkJrtVoB03oA2gIR0CxP97di2DydX2UKGgGR0CfLMobXHzZaAdNLgNoCEdAsUQdJyyUtHV9lChoBkdAolTS4Ds+mmgHTegDaAhHQLFH4eFtbcJ1fZQoaAZHQKMXZD1GsmxoB03oA2gIR0CxTFCWiUPhdX2UKGgGR0B69Nvegte2aAdL0GgIR0CxT9kHUtqYdX2UKGgGR0CiYSWsJY1YaAdN6ANoCEdAsVFwv0yxiXV9lChoBkdAk22NGEwnIGgHTRECaAhHQLFVdrUb1h91fZQoaAZHQKJtoPQOWjZoB03oA2gIR0CxWAlf3N9qdX2UKGgGR0CjVX+GO+7EaAdN6ANoCEdAsVx3eN1hcHV9lChoBkdAkoYRzeXRgWgHTe8BaAhHQLFgb5BTn7p1fZQoaAZHQKJ6d2ZiNKhoB03oA2gIR0CxYwUJ4SpSdX2UKGgGR0CjA25LIxQBaAdN6ANoCEdAsWdnuOS4fHV9lChoBkdAg1Vf1QIldGgHTRIBaAhHQLFrONaQmu11fZQoaAZHQKHCqRJVbRpoB03oA2gIR0CxbQ3vttygdX2UKGgGR0Ci2hwokRjCaAdN6ANoCEdAsXF7wjMV13V9lChoBkdAo2ZzTSb6QGgHTegDaAhHQLF535Z8rqd1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 990341,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVWwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxaFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLFoWUaBl0lFKUjAZfc2hhcGWUSxaFlIwDbG93lGgRKJZYAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLFoWUaBl0lFKUjARoaWdolGgRKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLFoWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
"_shape": [
22
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
"low_repr": "-inf",
"high_repr": "inf",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVfgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sGhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
"dtype": "float32",
"bounded_below": "[ True True True True True True]",
"bounded_above": "[ True True True True True True]",
"_shape": [
6
],
"low": "[-1. -1. -1. -1. -1. -1.]",
"high": "[1. 1. 1. 1. 1. 1.]",
"low_repr": "-1.0",
"high_repr": "1.0",
"_np_random": "Generator(PCG64)"
},
"n_envs": 1,
"buffer_size": 1,
"batch_size": 100,
"learning_starts": 10000,
"tau": 0.005,
"gamma": 0.98,
"gradient_steps": -1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7ae480cfa440>",
"add": "<function ReplayBuffer.add at 0x7ae480cfa4d0>",
"sample": "<function ReplayBuffer.sample at 0x7ae480cfa560>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7ae480cfa5f0>",
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7ae480cfa680>)>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7ae480e70940>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
},
"use_sde_at_warmup": false,
"policy_delay": 2,
"target_noise_clip": 0.5,
"target_policy_noise": 0.2,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"actor_batch_norm_stats": [],
"critic_batch_norm_stats": [],
"actor_batch_norm_stats_target": [],
"critic_batch_norm_stats_target": []
}