Emperor-WS commited on
Commit
b7151ec
1 Parent(s): 51dd1cf

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.75 +/- 87.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env LunarLander-v2 -orga Emperor-WS -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env LunarLander-v2 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env LunarLander-v2 -orga Emperor-WS -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env LunarLander-v2 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env LunarLander-v2 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env LunarLander-v2 -f logs/ -orga Emperor-WS
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('ent_coef', 0.01),
67
+ ('gae_lambda', 0.98),
68
+ ('gamma', 0.999),
69
+ ('n_envs', 16),
70
+ ('n_epochs', 4),
71
+ ('n_steps', 1024),
72
+ ('n_timesteps', 1000000.0),
73
+ ('policy', 'MlpPolicy'),
74
+ ('normalize', False)])
75
+ ```
76
+
77
+ # Environment Arguments
78
+ ```python
79
+ {'render_mode': 'rgb_array'}
80
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - LunarLander-v2
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_env_kwargs
13
+ - null
14
+ - - eval_episodes
15
+ - 5
16
+ - - eval_freq
17
+ - 25000
18
+ - - gym_packages
19
+ - []
20
+ - - hyperparams
21
+ - null
22
+ - - log_folder
23
+ - logs/
24
+ - - log_interval
25
+ - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
+ - - n_evaluations
31
+ - null
32
+ - - n_jobs
33
+ - 1
34
+ - - n_startup_trials
35
+ - 10
36
+ - - n_timesteps
37
+ - 5000000
38
+ - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
+ - - num_threads
43
+ - -1
44
+ - - optimization_log_path
45
+ - null
46
+ - - optimize_hyperparameters
47
+ - false
48
+ - - progress
49
+ - false
50
+ - - pruner
51
+ - median
52
+ - - sampler
53
+ - tpe
54
+ - - save_freq
55
+ - -1
56
+ - - save_replay_buffer
57
+ - false
58
+ - - seed
59
+ - 1307132777
60
+ - - storage
61
+ - null
62
+ - - study_name
63
+ - null
64
+ - - tensorboard_log
65
+ - ''
66
+ - - track
67
+ - false
68
+ - - trained_agent
69
+ - ''
70
+ - - truncate_last_trajectory
71
+ - true
72
+ - - uuid
73
+ - false
74
+ - - vec_env
75
+ - dummy
76
+ - - verbose
77
+ - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
config.yml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - ent_coef
5
+ - 0.01
6
+ - - gae_lambda
7
+ - 0.98
8
+ - - gamma
9
+ - 0.999
10
+ - - n_envs
11
+ - 16
12
+ - - n_epochs
13
+ - 4
14
+ - - n_steps
15
+ - 1024
16
+ - - n_timesteps
17
+ - 1000000.0
18
+ - - policy
19
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a0da712ee8fad924d65f9657a99dd8ca7287d88c51ffec702e37edfbad40779
3
+ size 149592
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.0a2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ef77eee6830>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ef77eee68c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ef77eee6950>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ef77eee69e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ef77eee6a70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ef77eee6b00>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ef77eee6b90>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ef77eee6c20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ef77eee6cb0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ef77eee6d40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ef77eee6dd0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ef77eee6e60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ef77eedbfc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 5013504,
25
+ "_total_timesteps": 5000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": 0,
28
+ "action_noise": null,
29
+ "start_time": 1709335741250475432,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": null,
33
+ "_last_episode_starts": {
34
+ ":type:": "<class 'numpy.ndarray'>",
35
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
36
+ },
37
+ "_last_original_obs": null,
38
+ "_episode_num": 0,
39
+ "use_sde": false,
40
+ "sde_sample_freq": -1,
41
+ "_current_progress_remaining": -0.0027007999999999477,
42
+ "_stats_window_size": 100,
43
+ "ep_info_buffer": {
44
+ ":type:": "<class 'collections.deque'>",
45
+ ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLbAoG6f8OMAWyUS9yMAXSUR0Cjb8cSXdCWdX2UKGgGR0Bz58TYdyT7aAdL1mgIR0Cjb8Z2yLQ5dX2UKGgGR0BvYv8IiTt+aAdLu2gIR0Cjb8vLHMlkdX2UKGgGR0BxpjkHUtqYaAdLwGgIR0Cjb+qoAGSqdX2UKGgGR0BxI+NtIkJKaAdLxmgIR0Cjb+l0o0AMdX2UKGgGR0By3D4nF5v+aAdLsGgIR0CjcBlrVOKwdX2UKGgGR0Bwhg4dZJTVaAdLxmgIR0CjcEXkxREXdX2UKGgGR0Byiz5BTn7paAdL1GgIR0CjcEcUmD15dX2UKGgGR0BxSPDTBqKxaAdL3GgIR0CjcEbSApazdX2UKGgGR0BzauOwPiDNaAdL7mgIR0CjcEvBi1ArdX2UKGgGR0By6xCdBjWkaAdL1mgIR0CjcEjZUT+OdX2UKGgGR0Bz1Aj5bhWHaAdL6GgIR0CjcJKrilzmdX2UKGgGR0Bx3oD0UXYUaAdLy2gIR0CjcJBXKbKBdX2UKGgGR0ByHcj9n9NvaAdLyWgIR0CjcJrvCuU2dX2UKGgGR0BylCYNRWLhaAdL22gIR0CjcJ98Z1mrdX2UKGgGR0BxUTj1f3N+aAdLw2gIR0CjcKSj59E1dX2UKGgGR0BxHjqiXY16aAdLuWgIR0CjcL/1HvtudX2UKGgGR0BxfFrvb48EaAdLumgIR0CjcMaguh9LdX2UKGgGR0Bv7mbiIcioaAdLy2gIR0CjcNlnRLK3dX2UKGgGR0BzBzzwtrbhaAdLxGgIR0CjcPMM7U5NdX2UKGgGR0BIEKBEroW6aAdLl2gIR0CjcROO801qdX2UKGgGR0Byv7p4bCJoaAdL2mgIR0CjcRJItlI3dX2UKGgGR0BwFlAD7qIKaAdLzWgIR0CjefttALRbdX2UKGgGR0ByeK5Fw1iwaAdLr2gIR0CjegIphF3IdX2UKGgGR0ByTnYQJ5VwaAdLvWgIR0CjehsUIsy0dX2UKGgGR0Bur+8brC3xaAdLymgIR0Cjeiljd56ddX2UKGgGR0Bxyxoakyk9aAdL32gIR0CjekhJ7LMcdX2UKGgGR0BzodMvh60IaAdLxGgIR0CjfFTkZJkHdX2UKGgGR0BxPHkFOfukaAdLx2gIR0CjfFUmUnogdX2UKGgGR0BzsRuR9w3paAdLyWgIR0CjfGIH1OCYdX2UKGgGR0BzGJwYLsrvaAdL3WgIR0CjfGp84PwvdX2UKGgGR0By1btKIznBaAdLu2gIR0CjfHIx59mZdX2UKGgGR0Bys6DQJHAiaAdLtGgIR0CjfJUb961LdX2UKGgGR0Bzkx1q33HraAdL0WgIR0CjfKMK1G9YdX2UKGgGR0BwQ/bg0j1PaAdL52gIR0CjfKeq7yxzdX2UKGgGR0ByFlpN9H+ZaAdLu2gIR0CjfL4XXRPXdX2UKGgGR0ByA1+Zw4sFaAdLv2gIR0CjfOBUR3/xdX2UKGgGR0By541cdHUdaAdL22gIR0CjfOsjeKsNdX2UKGgGR0ByXEgQpWmxaAdLw2gIR0CjfQNvn8sMdX2UKGgGR0Byf6v4dp7DaAdL4WgIR0CjfRQg1WKedX2UKGgGR0BzT1TsIE8raAdLyWgIR0CjfRkBS1mbdX2UKGgGR0BVvKaG5+YuaAdLomgIR0CjfTVO9FnadX2UKGgGR0BxfqqGUOd5aAdLxGgIR0CjfTHlwLmZdX2UKGgGR0BvN5VjqfOEaAdLymgIR0CjfWs7lq8EdX2UKGgGR0BxAD+m3vx6aAdLvGgIR0CjfWwXAM2FdX2UKGgGR0Bw6XyCnP3SaAdLwmgIR0CjfX5zgdfcdX2UKGgGR0Bz0xJL/S6UaAdL12gIR0CjfY6rNnoQdX2UKGgGR0Bu4EPczqKQaAdLv2gIR0CjfbfaYeDGdX2UKGgGR0Bv4qNMoMKDaAdLuWgIR0CjfcZIYm9hdX2UKGgGR0BzUDnaFmFraAdLzWgIR0CjfcbTDwYtdX2UKGgGR0Bu5zrxAjY7aAdL22gIR0Cjfcwe/5+IdX2UKGgGR0BylVMHryDqaAdLwWgIR0CjffN0mtyQdX2UKGgGR0BzD3U1AJLNaAdLz2gIR0CjfhFiSaE0dX2UKGgGR0Bxc0AeaKDTaAdLw2gIR0CjfhlTefqYdX2UKGgGR0B0JCJZW7voaAdLwmgIR0CjfijD0lJIdX2UKGgGR0BzbNPBSDRMaAdNJgJoCEdAo345frrxAnV9lChoBkdAcxrGBWgezWgHS7toCEdAo34+mJm/WXV9lChoBkdAc06Rp1zQu2gHS9toCEdAo35PxSYPXnV9lChoBkdAcKRT5O8CgmgHS8xoCEdAo35SifxtpHV9lChoBkdAcAAVHnU2DWgHS8ZoCEdAo36FEuxrz3V9lChoBkdAcMVjlgc94mgHS9VoCEdAo36Y8OkLyHV9lChoBkdAcpWozvZyuWgHS9FoCEdAo36wXMyJsXV9lChoBkdAc1dOeJ53T2gHS9toCEdAo36w3FUADXV9lChoBkdAb779If8uSWgHS7loCEdAo37CLOzIFXV9lChoBkdAchCo4MnZ02gHS8NoCEdAo37BlpXZG3V9lChoBkdAcL80k4WDYmgHS8loCEdAo37XsLORknV9lChoBkdAcbxfzSThYWgHS+JoCEdAo37+qvNeMXV9lChoBkdAcbspzLfUF2gHS7xoCEdAo38c3l0YCXV9lChoBkdAcOHnZkCmuWgHS+JoCEdAo38wprk8zXV9lChoBkdAchz3hGYrrmgHS7toCEdAo39DQVsUI3V9lChoBkdAcEnyoXKr72gHS8hoCEdAo39EjVx0dXV9lChoBkdAcgXguh9LH2gHS95oCEdAo39LRIBikXV9lChoBkdAcpQtAcDKYGgHS8VoCEdAo39Whh6SknV9lChoBkdAcOAmk30f5mgHS9hoCEdAo3+JEpiI+HV9lChoBkdAcR1Cqp97W2gHS9doCEdAo3/QJ1JUYXV9lChoBkdAcVYgR9PUKGgHS+JoCEdAo3/LrC3w1HV9lChoBkdAcbYJCBwuNGgHS8xoCEdAo3/bMkhRqHV9lChoBkdAcx/1Muez2WgHS8loCEdAo3/ZuwX67HV9lChoBkdAc0nHRTjvNWgHS75oCEdAo3/c2NvOyHV9lChoBkdAc1MVLzwtrmgHS8NoCEdAo3/lUKiPAHV9lChoBkdAb8WdpZfUnWgHS8poCEdAo4AEKu0TlHV9lChoBkdAcozoWHk92WgHS7FoCEdAo4AJ9AooeHV9lChoBkdAc7vlGgBcRmgHS75oCEdAo4BDuMMqjXV9lChoBkdAc84f3N9piGgHS81oCEdAo4BJxYJVsHV9lChoBkdAcMHwnYxtYWgHS7poCEdAo4BO/k/8mHV9lChoBkdAc3ABY3eenWgHS7xoCEdAo4BZZbILgHV9lChoBkdAcQ7U+9rXUmgHS71oCEdAo4Bl5fMOgHV9lChoBkdAcXr7qptJnWgHS8xoCEdAo4Bo1+AmRnV9lChoBkdAcmAqJ/G2kWgHS8loCEdAo4ChZW7vonV9lChoBkdAcv3N+so2GmgHS8NoCEdAo4DYjt5UtXV9lChoBkdAcMyBacI7eWgHS8poCEdAo4DnIlt0m3V9lChoBkdAcXaFM7EHdGgHS8ZoCEdAo4DqyhSLqHV9lChoBkdAcF2ScLBsRGgHS9BoCEdAo4D+U2UB4nV9lChoBkdAb3CAnUlRg2gHS8JoCEdAo4ELZSNwSHV9lChoBkdAcfIuieumrWgHS91oCEdAo4EJ3aBZp3V9lChoBkdAcAVDjBEa2mgHS+RoCEdAo4ER6lchT3V9lChoBkdAc/HkIHC40GgHS99oCEdAo4E39FWn0nV9lChoBkdAcicYA80UGmgHS71oCEdAo4FOinHeanV9lChoBkdAcMjtNSIgvGgHS8VoCEdAo4FOrp7kXHV9lChoBkdAcduUPhAGCGgHS8ZoCEdAo4FktoSL63VlLg=="
46
+ },
47
+ "ep_success_buffer": {
48
+ ":type:": "<class 'collections.deque'>",
49
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
50
+ },
51
+ "_n_updates": 1224,
52
+ "observation_space": {
53
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
54
+ ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
55
+ "dtype": "float32",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_shape": [
59
+ 8
60
+ ],
61
+ "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
62
+ "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
63
+ "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
64
+ "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
65
+ "_np_random": null
66
+ },
67
+ "action_space": {
68
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
69
+ ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
70
+ "n": "4",
71
+ "start": "0",
72
+ "_shape": [],
73
+ "dtype": "int64",
74
+ "_np_random": "Generator(PCG64)"
75
+ },
76
+ "n_envs": 1,
77
+ "n_steps": 1024,
78
+ "gamma": 0.999,
79
+ "gae_lambda": 0.98,
80
+ "ent_coef": 0.01,
81
+ "vf_coef": 0.5,
82
+ "max_grad_norm": 0.5,
83
+ "rollout_buffer_class": {
84
+ ":type:": "<class 'abc.ABCMeta'>",
85
+ ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=",
86
+ "__module__": "stable_baselines3.common.buffers",
87
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
88
+ "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
89
+ "__init__": "<function RolloutBuffer.__init__ at 0x7ef77f059630>",
90
+ "reset": "<function RolloutBuffer.reset at 0x7ef77f0596c0>",
91
+ "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x7ef77f059750>",
92
+ "add": "<function RolloutBuffer.add at 0x7ef77f0597e0>",
93
+ "get": "<function RolloutBuffer.get at 0x7ef77f059870>",
94
+ "_get_samples": "<function RolloutBuffer._get_samples at 0x7ef77f059900>",
95
+ "__abstractmethods__": "frozenset()",
96
+ "_abc_impl": "<_abc._abc_data object at 0x7ef77f04f400>"
97
+ },
98
+ "rollout_buffer_kwargs": {},
99
+ "batch_size": 64,
100
+ "n_epochs": 4,
101
+ "clip_range": {
102
+ ":type:": "<class 'function'>",
103
+ ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
104
+ },
105
+ "clip_range_vf": null,
106
+ "normalize_advantage": true,
107
+ "target_kl": null,
108
+ "lr_schedule": {
109
+ ":type:": "<class 'function'>",
110
+ ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
111
+ }
112
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eff31dcc55856dc6721ea33f55c399e5b6ee44e0cd9f7fc1e0caf7ac15785ae2
3
+ size 88490
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dca14b54f2aa3013ad2eaa4a0a8ba2a278f2a85b4a21a36f9c4de44d03d16e1
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023
2
+ - Python: 3.10.13
3
+ - Stable-Baselines3: 2.3.0a2
4
+ - PyTorch: 2.1.2
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.3
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.26.2
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52401ee542f9e675adf003b7bce960eee0434c23c1b495adec4724c1523c5134
3
+ size 151550
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.7491705, "std_reward": 87.96881555057985, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-02T00:14:25.825672"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dddc901db701cd893bb396e0c02a3629a22c59f3f96629e6e93023731675973b
3
+ size 565068