a2c-PandaReachDense-v3 / config.json
EmirhanExecute's picture
Initial commit
b8e67c8
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7dc27f0884c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dc27f07b200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692805084516606414, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJSkpvV7uxD7Ll2i++gV/Pwg2lj/UC6g/ImVcPt9GG7xkKuA+92EEvr4sxD7UZlO+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAR2YWPpesLz/GQpK+yy/HP8wRpz8SzMI/FsE6PAej0j8ckLs+2pwdv9ZVvD95isK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAlKSm9Xu7EPsuXaL6aUp+/LfLTP4b+o7/6BX8/CDaWP9QLqD8wjo8/jhNfP6l5vj8iZVw+30YbvGQq4D6F7fQ+tLh/uQNpxz73YQS+vizEPtRmU768OvS/VrzSP6I2s7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.041299 0.3846311 -0.22714154]\n [ 0.99618495 1.1735239 1.312861 ]\n [ 0.21522954 -0.00947735 0.4378234 ]\n [-0.12927996 0.38315386 -0.20644695]]", "desired_goal": "[[ 0.14687453 0.68622726 -0.2856657 ]\n [ 1.556146 1.3052306 1.5218527 ]\n [ 0.01139857 1.6456002 0.36633384]\n [-0.6156746 1.4713695 -1.5198509 ]]", "observation": "[[-4.1299004e-02 3.8463110e-01 -2.2714154e-01 -1.2447083e+00\n 1.6558281e+00 -1.2812049e+00]\n [ 9.9618495e-01 1.1735239e+00 1.3128610e+00 1.1215267e+00\n 8.7139213e-01 1.4880878e+00]\n [ 2.1522954e-01 -9.4773462e-03 4.3782341e-01 4.7837463e-01\n -2.4387502e-04 3.8947305e-01]\n [-1.2927996e-01 3.8315386e-01 -2.0644695e-01 -1.9080424e+00\n 1.6463726e+00 -1.4001048e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACkLZvTtjhj2heog+iD7XvGd9QD13Bw0+OimHO8qfgT2qDTk+y7IuPUOurz1p4i8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10608299 0.06561895 0.26656058]\n [-0.02627493 0.04699459 0.13772379]\n [ 0.00412479 0.06329305 0.18071619]\n [ 0.04265098 0.0857816 0.17176212]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7iVObiIciqMAWyUSwKMAXSUR0CnlFbrcCYDdX2UKGgGR7/NEQXhwVCYaAdLA2gIR0CnlBsHB1s+dX2UKGgGR7/N9a2WpqASaAdLA2gIR0CnlNlRgqmTdX2UKGgGR7/LR0lqrR0EaAdLA2gIR0CnlJ5COWB0dX2UKGgGR7+8I7eVLSNPaAdLAmgIR0CnlGfqPfbcdX2UKGgGR7/WqMWGh24eaAdLA2gIR0CnlDKNIbwSdX2UKGgGR7/YwNb1RLsbaAdLBGgIR0CnlPU0vXbudX2UKGgGR7/cwpON5t3waAdLBGgIR0CnlLoHcDbKdX2UKGgGR7/PBDXvphWpaAdLA2gIR0CnlH1cMVk+dX2UKGgGR7/BUADJU5uJaAdLAmgIR0CnlEEnCwbEdX2UKGgGR7+nXTVlPJq7aAdLAWgIR0CnlP/aYeDGdX2UKGgGR7+lSS/0ulGgaAdLAWgIR0CnlIgI6bONdX2UKGgGR7+X0oScslLOaAdLAWgIR0CnlQa3iJfqdX2UKGgGR7/P+gDifg76aAdLA2gIR0CnlNF9KEnLdX2UKGgGR7+7thNM495haAdLAmgIR0CnlJSqU/wBdX2UKGgGR7++lhw2l2vCaAdLAmgIR0CnlRQWWQfZdX2UKGgGR7/hQco6S1VpaAdLBGgIR0CnlF9ld1MedX2UKGgGR7+4uSOinHeaaAdLAmgIR0CnlSPbwjMWdX2UKGgGR7/Kl0o0ALiNaAdLA2gIR0CnlOjSPU8WdX2UKGgGR7/MGiYb83uNaAdLA2gIR0CnlKwDvE0jdX2UKGgGR7/RtNBWxQizaAdLA2gIR0CnlHbT2FnJdX2UKGgGR7+9og3cYZVGaAdLAmgIR0CnlPbCSA6NdX2UKGgGR7/SHQyAQQMAaAdLA2gIR0CnlL/KhcqwdX2UKGgGR7+7S3LFGXolaAdLAmgIR0CnlIO3trsTdX2UKGgGR7/eovi97F85aAdLBGgIR0CnlT75M10ldX2UKGgGR7/CwSrYGt6paAdLAmgIR0CnlJLhaTwEdX2UKGgGR7/BvfCQ9zOpaAdLAmgIR0CnlU4ht+CsdX2UKGgGR7/Y9ZzPrv9caAdLBGgIR0CnlRLLZBcBdX2UKGgGR7/OPMjeKsMiaAdLA2gIR0CnlNYp2ECedX2UKGgGR7/JMajvd/KAaAdLA2gIR0CnlKfpD/lydX2UKGgGR7/Ut5D7ZWaMaAdLA2gIR0CnlWNSydFwdX2UKGgGR7+kIVuaWom5aAdLAWgIR0CnlW0L2HtXdX2UKGgGR7/bLt/nW8RMaAdLBGgIR0CnlTI2GZeBdX2UKGgGR7/XyHEdeY2LaAdLBGgIR0CnlPV3ljmTdX2UKGgGR7+8IUrTYukDaAdLAmgIR0CnlLlg2IfsdX2UKGgGR7+zFYMfA9FGaAdLAmgIR0CnlXv8yeqadX2UKGgGR7/B0zTF2mpEaAdLAmgIR0CnlMfms/6gdX2UKGgGR7/OaPS2H+IeaAdLA2gIR0CnlQuogmqpdX2UKGgGR7/CUBXCCSRsaAdLAmgIR0CnlYt6w+t9dX2UKGgGR7/Ryc0+C9RKaAdLBGgIR0CnlVBhx5s1dX2UKGgGR7+pkqc3EQ5FaAdLAWgIR0CnlRPeP7vYdX2UKGgGR7/OTB68g6ltaAdLA2gIR0CnlOG8274BdX2UKGgGR7/FYDklu3tsaAdLAmgIR0CnlSSHdoFndX2UKGgGR7/QjDsMRYigaAdLA2gIR0CnlaNKqXF+dX2UKGgGR7+/1g6U7jkuaAdLAmgIR0CnlO5id8RddX2UKGgGR7/W7laKUFB6aAdLBGgIR0CnlW8OkLx7dX2UKGgGR7/BUnXumaYvaAdLAmgIR0CnlTJhfBvadX2UKGgGR7++UzKs+3YuaAdLAmgIR0CnlbJEhJRPdX2UKGgGR7+e67NB4UvgaAdLAWgIR0Cnlbvl+3H8dX2UKGgGR7+zhtLteD3/aAdLAmgIR0CnlYCzcAR1dX2UKGgGR7/MYLsrupjuaAdLA2gIR0CnlQe/QBxQdX2UKGgGR7/TQmeDnNgSaAdLA2gIR0CnlUrPUrkKdX2UKGgGR7/NHCoCMgloaAdLA2gIR0CnldDyOJcgdX2UKGgGR7/UVtoBaLXMaAdLA2gIR0CnlZW5xzaLdX2UKGgGR7/AW0qpcX3yaAdLAmgIR0CnlVl/YraudX2UKGgGR7/GDL8rI5o5aAdLA2gIR0CnlR1tfoicdX2UKGgGR7+3+5vtMPBjaAdLAmgIR0CnlaizC1qndX2UKGgGR7/YJY1YQrc1aAdLBGgIR0CnlfFsguAadX2UKGgGR7/HfZVXFLnLaAdLAmgIR0CnlbYsunMudX2UKGgGR7/YTMJQcghbaAdLBGgIR0CnlXlbu+h5dX2UKGgGR7/WZuQ6p5u7aAdLBGgIR0CnlT1NpM6BdX2UKGgGR7+jDKoybhFWaAdLAWgIR0CnlYDBl+VkdX2UKGgGR7/JmkFfReC1aAdLA2gIR0CnlgkXtShrdX2UKGgGR7/IEqUeMhouaAdLA2gIR0Cnlc4vvjOtdX2UKGgGR7/Ll7tzCDVZaAdLA2gIR0CnlVU4iosJdX2UKGgGR7/IOaOPvKEGaAdLA2gIR0CnlZoSUTtcdX2UKGgGR7+9zDGcWj46aAdLAmgIR0Cnld7K7qY7dX2UKGgGR7/DMC9ytFKDaAdLAmgIR0CnlWYHX2/SdX2UKGgGR7/LCZ4Oc2BKaAdLA2gIR0CnliG7z06HdX2UKGgGR7+0pazNUwSKaAdLAmgIR0CnlaoW56MSdX2UKGgGR7+t25hBqsU7aAdLAmgIR0CnlXUh3aBadX2UKGgGR7/TQyhzvJA/aAdLA2gIR0CnlfiBPKuCdX2UKGgGR7/ThDPWxyGSaAdLA2gIR0CnljvPLPlddX2UKGgGR7/Rle4TbnHOaAdLA2gIR0CnlcPomoitdX2UKGgGR7/RcmShakhzaAdLA2gIR0CnlY655JK8dX2UKGgGR7+4EC/47A+IaAdLAmgIR0CnldI7/4qPdX2UKGgGR7/HSMtK7I1caAdLA2gIR0CnllGSQo1DdX2UKGgGR7/cBt1p0wJxaAdLBWgIR0CnliE4ecQRdX2UKGgGR7+4W69TP0I1aAdLAmgIR0CnleSVv/BFdX2UKGgGR7/EFnqVyFPBaAdLA2gIR0Cnlah6KLsKdX2UKGgGR7/GU7jkuHvdaAdLA2gIR0Cnlmnuy/sWdX2UKGgGR7/HZ6D5CWu6aAdLA2gIR0CnljXJ5mh/dX2UKGgGR7/MeZG8VYZEaAdLA2gIR0CnlfkfLcKxdX2UKGgGR7/L0th/iHZcaAdLA2gIR0Cnlbz4L1EmdX2UKGgGR7/E4wRGtp22aAdLAmgIR0CnlnhkAggYdX2UKGgGR7/CDYAbQ1JlaAdLAmgIR0Cnlke8wpOOdX2UKGgGR7/D8LKFIuoQaAdLAmgIR0Cnlc7CJoCddX2UKGgGR7/OGyHEdeY2aAdLA2gIR0CnlhGzKLbYdX2UKGgGR7+k2WIGhVU/aAdLAWgIR0CnldWx6fJ4dX2UKGgGR7/UJf6XSjQBaAdLA2gIR0CnlpGygPEsdX2UKGgGR7+kVpKzzErHaAdLAWgIR0CnlhlzdUKidX2UKGgGR7+/HDJlrdnCaAdLAmgIR0CnleOL74zrdX2UKGgGR7+7WxyGSIP9aAdLAmgIR0CnliZRKpT/dX2UKGgGR7/NZdOZb6gvaAdLA2gIR0CnlqfetSyddX2UKGgGR7/AH3UQTVUdaAdLAmgIR0CnlfOf29L6dX2UKGgGR7+kQRPGhmGuaAdLAWgIR0CnlfpbUwztdX2UKGgGR7/bk2P1ct5EaAdLB2gIR0Cnlnnxz7uVdX2UKGgGR7/VEA5q/M4caAdLA2gIR0CnlrvDxb0OdX2UKGgGR7+/WPLgXMyKaAdLAmgIR0Cnlgb+T/yYdX2UKGgGR7/UixmkFfReaAdLBWgIR0CnlknCoCMhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}