EmberrJoel commited on
Commit
9de62af
1 Parent(s): 0fb6f45

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 235.42 +/- 24.73
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb9afe1160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb9afe11f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb9afe1280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb9afe1310>", "_build": "<function ActorCriticPolicy._build at 0x7fcb9afe13a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcb9afe1430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb9afe14c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcb9afe1550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb9afe15e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb9afe1670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb9afe1700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcb9afdb600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670353602564424573, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYwYLxI85a6WyPeOi/rZjXv9qm6/kwAugAAgD8AAIA/zTcXvVyjfbrjK5s6OmiVtTeA1jnQOLW5AACAPwAAgD/Ac2++vxqgP9FJzL7OVcO+iDlMvjbYn7wAAAAAAAAAAADs872t4l0/SNRVvSoqkr7dxIO9ZgpbPQAAAAAAAAAAOlFZPkOrqj7Li5O+9Rlpvqyvmr0mb/K8AAAAAAAAAAAzktA8tlMUvA9ZML6m/4K9aUPBOx51Jj4AAIA/AACAP5pynTyu2a+6LfpHO7zXHzaORvo54NZkugAAgD8AAIA/ow2fPvuZAz9UQzq9bqSGvrl7/z0lV5y9AAAAAAAAAACGDzW+pijOPs1uyDxu4Zy+1OI9ugWZfz0AAAAAAAAAAGbWDj1ROZQ/0PoAPvk9tL4PA4w9KLt0PQAAAAAAAAAA5lQqvRSMgboY3oi5FsuFtLPe9bkjoZ84AACAPwAAgD8tMQi+13mHPk5Jjb0ud3e+nmYVPVjCpzsAAAAAAAAAAOavvb10gRw+3pFDvY54HL49cE29Dr8NPQAAAAAAAAAAzdzCug3iYT6GfxM9RUGBvvo1hT3MsLm6AAAAAAAAAABATVI+2XgJP2r+LL4/A5u+6VCAPb5UTb0AAAAAAAAAAK0AGj63fAQ/Rj9FvmH6Or5y9aO8iINcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgctjzcjVZECUhpRSlIwBbJRN6AOMAXSUR0CSciaXa8HwdX2UKGgGaAloD0MIBcB4Bk3LcECUhpRSlGgVTdQCaBZHQJKK5Jg9eQd1fZQoaAZoCWgPQwgw9l580SRhQJSGlFKUaBVN6ANoFkdAkou5cX3xnXV9lChoBmgJaA9DCF1Std0Elm5AlIaUUpRoFU0NAmgWR0CSkcyIYWLxdX2UKGgGaAloD0MIz0wwnCtHcECUhpRSlGgVTVYCaBZHQJKSOQJXyRV1fZQoaAZoCWgPQwiOA6+WO39dQJSGlFKUaBVN6ANoFkdAkpMvyf+S83V9lChoBmgJaA9DCBdFD3yMSGxAlIaUUpRoFU16A2gWR0CSk9YXO4XodX2UKGgGaAloD0MIzAna5HAxbECUhpRSlGgVTUUBaBZHQJKUu4+bExZ1fZQoaAZoCWgPQwg25nXE4RpwQJSGlFKUaBVN+gJoFkdAkpUt+TeO43V9lChoBmgJaA9DCHIz3IBPCm9AlIaUUpRoFU1AA2gWR0CSmZi48U22dX2UKGgGaAloD0MIXRjpRe1CNUCUhpRSlGgVS/FoFkdAkp23PE87p3V9lChoBmgJaA9DCLH9ZIwPQmFAlIaUUpRoFU3oA2gWR0CSnmlFc6eYdX2UKGgGaAloD0MI0zHnGbvxcUCUhpRSlGgVTYABaBZHQJKeiN83Mpx1fZQoaAZoCWgPQwjXprG9lnBxQJSGlFKUaBVNMgFoFkdAkqJBTwUg0XV9lChoBmgJaA9DCCoAxjPopmNAlIaUUpRoFU3oA2gWR0CSoqfp2U0OdX2UKGgGaAloD0MI/vFetbJTbUCUhpRSlGgVTUcBaBZHQJKlM94eLeh1fZQoaAZoCWgPQwgEWrqCbbxvQJSGlFKUaBVNvgJoFkdAkqYfvjOs1nV9lChoBmgJaA9DCEWhZd0/PiVAlIaUUpRoFU0EAWgWR0CSpkpeu3c6dX2UKGgGaAloD0MIT7FqEOYQTkCUhpRSlGgVS/doFkdAkqmSYb83uXV9lChoBmgJaA9DCDyGx37WJnFAlIaUUpRoFU3oAmgWR0CSqchpQDV6dX2UKGgGaAloD0MI1A/qIoVmP0CUhpRSlGgVS/RoFkdAkqouIAOrhnV9lChoBmgJaA9DCAbX3NH/F1dAlIaUUpRoFU3oA2gWR0CSrVBF/hESdX2UKGgGaAloD0MIsU0qGmtwYECUhpRSlGgVTegDaBZHQJKu0dFOO811fZQoaAZoCWgPQwj5hy09mmZuQJSGlFKUaBVNawNoFkdAkq/RvaURnXV9lChoBmgJaA9DCLIN3IH65HBAlIaUUpRoFU1WAmgWR0CSsGNL127ndX2UKGgGaAloD0MIA0Lr4YuScECUhpRSlGgVTX8CaBZHQJKzH8XN1Qt1fZQoaAZoCWgPQwjNzqJ3KmwwQJSGlFKUaBVL9WgWR0CStNbSZ0CBdX2UKGgGaAloD0MIxhnDnCCVcUCUhpRSlGgVTbIBaBZHQJK2zV9Wp611fZQoaAZoCWgPQwgmcyzvqgcZQJSGlFKUaBVL62gWR0CSuEWt2cJ/dX2UKGgGaAloD0MIsoS1MXZnckCUhpRSlGgVTV4DaBZHQJLNYEfT1Ch1fZQoaAZoCWgPQwjJWG3+X9llQJSGlFKUaBVN6ANoFkdAks5Bm5DqnnV9lChoBmgJaA9DCE7yI37F2i5AlIaUUpRoFUv3aBZHQJLQ4cp9ZzR1fZQoaAZoCWgPQwjpmPOMPR9wQJSGlFKUaBVNvwJoFkdAktGhH9WIXXV9lChoBmgJaA9DCIeGxairgnFAlIaUUpRoFU1ZAWgWR0CS0srmyPdVdX2UKGgGaAloD0MIbY/ecB80bUCUhpRSlGgVTXYCaBZHQJLV7nzQNTd1fZQoaAZoCWgPQwgpPGh2XQRyQJSGlFKUaBVNVQNoFkdAkt3ZntfG/HV9lChoBmgJaA9DCPkupS6ZsmpAlIaUUpRoFU3PAWgWR0CS3oXvphWpdX2UKGgGaAloD0MIgLdAguLPO0CUhpRSlGgVS+xoFkdAkt/ELx7RfHV9lChoBmgJaA9DCOf7qfHSi29AlIaUUpRoFU3kAmgWR0CS4I29tdiVdX2UKGgGaAloD0MIpx/URcq1cECUhpRSlGgVTW4BaBZHQJLgwwi7kGR1fZQoaAZoCWgPQwikiuJV1s9tQJSGlFKUaBVNXwFoFkdAkuDoJeE7GXV9lChoBmgJaA9DCAiwyK+fzm1AlIaUUpRoFU26AWgWR0CS4VXhOxjbdX2UKGgGaAloD0MIwjI2dLOhb0CUhpRSlGgVTYMCaBZHQJLiLHKfWc11fZQoaAZoCWgPQwiU+NwJ9gpnQJSGlFKUaBVN6ANoFkdAkuexRqGlAXV9lChoBmgJaA9DCHb+7bJfR1lAlIaUUpRoFU3oA2gWR0CS6NmRvFWGdX2UKGgGaAloD0MIsHH9uz6z/j+UhpRSlGgVS/JoFkdAkulRoEjgRHV9lChoBmgJaA9DCGJM+nspwDZAlIaUUpRoFUvoaBZHQJLqYV6/qPh1fZQoaAZoCWgPQwiLql/pfCQzQJSGlFKUaBVL4GgWR0CS7HH93r2QdX2UKGgGaAloD0MIFHr9SfzoYUCUhpRSlGgVTegDaBZHQJLs82BJ7LN1fZQoaAZoCWgPQwhntiv0AaJwQJSGlFKUaBVNQQJoFkdAku6IE0SAY3V9lChoBmgJaA9DCOZXc4Dg12VAlIaUUpRoFU3oA2gWR0CS8dEnLJS0dX2UKGgGaAloD0MIKovCLooxbECUhpRSlGgVTaIBaBZHQJLyUhC+lCV1fZQoaAZoCWgPQwjQl97+3NluQJSGlFKUaBVNmQFoFkdAkvP+HzpX63V9lChoBmgJaA9DCDNrKSDt6zZAlIaUUpRoFUvoaBZHQJL1lpsXSBt1fZQoaAZoCWgPQwichxOYTmBhQJSGlFKUaBVN6ANoFkdAkvpO7g88tHV9lChoBmgJaA9DCMlYbf4fX3FAlIaUUpRoFU0qAmgWR0CS+zU70WdmdX2UKGgGaAloD0MITz3S4LZncUCUhpRSlGgVTfQCaBZHQJL7rMQmNR51fZQoaAZoCWgPQwiNfjScMocqQJSGlFKUaBVL8GgWR0CS/hm1IAfddX2UKGgGaAloD0MIRx0dV2N0cECUhpRSlGgVTRQCaBZHQJMU7h99c8l1fZQoaAZoCWgPQwjoFroSgW9uQJSGlFKUaBVNigFoFkdAkxUsjFAE+3V9lChoBmgJaA9DCCTW4lMAHnFAlIaUUpRoFU3bA2gWR0CTFTv+OwPidX2UKGgGaAloD0MIjPLMy+F5aUCUhpRSlGgVTUEBaBZHQJMXLTSb6P91fZQoaAZoCWgPQwjd6jnp/bBxQJSGlFKUaBVNbgFoFkdAkxe4sVclgXV9lChoBmgJaA9DCK67earDfG5AlIaUUpRoFU0ZAmgWR0CTGezvqkdndX2UKGgGaAloD0MIYocx6a+NcECUhpRSlGgVTWwBaBZHQJMaxnUUfxN1fZQoaAZoCWgPQwgIH0q0ZDBsQJSGlFKUaBVNKgJoFkdAkxsu8K5TZXV9lChoBmgJaA9DCLaA0Hr4XjhAlIaUUpRoFU0DAWgWR0CTG06N2ki2dX2UKGgGaAloD0MIKes3E9OJM0CUhpRSlGgVTRABaBZHQJMbe/fwZwZ1fZQoaAZoCWgPQwiKzFzg8uBEQJSGlFKUaBVL6GgWR0CTH4lUZNwjdX2UKGgGaAloD0MIecn/5G/TckCUhpRSlGgVTakDaBZHQJMgmw8nuzB1fZQoaAZoCWgPQwii0R3EzmNfQJSGlFKUaBVN6ANoFkdAkyLwrxy4nXV9lChoBmgJaA9DCDXvOEVHJHJAlIaUUpRoFU00A2gWR0CTIy3gUDdQdX2UKGgGaAloD0MIhCugUI/wcECUhpRSlGgVTU0BaBZHQJMkPmMfigl1fZQoaAZoCWgPQwhe9BWkGT1xQJSGlFKUaBVNOwFoFkdAkyWIyO7xu3V9lChoBmgJaA9DCLwhjQrcxXBAlIaUUpRoFU3SAWgWR0CTJtKoAGSqdX2UKGgGaAloD0MIqG4u/rY5T0CUhpRSlGgVTQUBaBZHQJMnbRzBAOd1fZQoaAZoCWgPQwhB8Pj2LrltQJSGlFKUaBVNagFoFkdAkyhFPFefI3V9lChoBmgJaA9DCICZ7+AnhW5AlIaUUpRoFU1RAmgWR0CTKVrDqGDddX2UKGgGaAloD0MIuHaiJGTOcECUhpRSlGgVTckBaBZHQJMqODdxhlV1fZQoaAZoCWgPQwiXdJSDGQhxQJSGlFKUaBVNTAFoFkdAkypGWMS9NHV9lChoBmgJaA9DCJZBtcHJmHFAlIaUUpRoFU1hAWgWR0CTKrWsijcmdX2UKGgGaAloD0MIIT8buW6bVkCUhpRSlGgVTegDaBZHQJMrwrnTy8V1fZQoaAZoCWgPQwiJB5RNuVBwQJSGlFKUaBVNIQFoFkdAky9vWQOnVHV9lChoBmgJaA9DCFCOAkTBo2tAlIaUUpRoFU1tAWgWR0CTL65eJHiFdX2UKGgGaAloD0MI3Esao3UUEMCUhpRSlGgVS+ZoFkdAkzAzeXRgJHV9lChoBmgJaA9DCB9N9WQ+XnBAlIaUUpRoFU0hAmgWR0CTMY/0dzXCdX2UKGgGaAloD0MIETgSaLDxKECUhpRSlGgVTQ4BaBZHQJMyXB+F10V1fZQoaAZoCWgPQwgjwOldPO9vQJSGlFKUaBVNSwJoFkdAkzSB9Tgl4XV9lChoBmgJaA9DCOQQcXPqQXBAlIaUUpRoFU0gAWgWR0CTNOvx6OYIdX2UKGgGaAloD0MIIR6JlycIbUCUhpRSlGgVTUcBaBZHQJM3Uo/iYLN1fZQoaAZoCWgPQwjRB8vYEHxyQJSGlFKUaBVNxQFoFkdAkzhX4TK1X3V9lChoBmgJaA9DCF35LM+Df0RAlIaUUpRoFUvgaBZHQJM4rej2zv91fZQoaAZoCWgPQwhEh8CRwOJvQJSGlFKUaBVNRAFoFkdAkzjocaOxS3V9lChoBmgJaA9DCHtNDwrK4HFAlIaUUpRoFU2GAWgWR0CTOeHSnccmdX2UKGgGaAloD0MIb59VZgqdcECUhpRSlGgVTYQBaBZHQJM6OsXBP9F1fZQoaAZoCWgPQwhpOjsZ3AVxQJSGlFKUaBVNEwJoFkdAkzpQYpDu0HV9lChoBmgJaA9DCB+DFadaWxHAlIaUUpRoFUvfaBZHQJM6hHqeK9B1fZQoaAZoCWgPQwgst7QaEs1vQJSGlFKUaBVN9wFoFkdAkzwbah6By3V9lChoBmgJaA9DCLyuX7Cba25AlIaUUpRoFU2uAmgWR0CTPPhkAggYdX2UKGgGaAloD0MItOVciuuTcECUhpRSlGgVTY4CaBZHQJM9nMA3kxR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0df54d13e7075f1b2c79e43455b77ab84bf06720e61dd823769b44d9fcfee94d
3
+ size 147134
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb9afe1160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb9afe11f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb9afe1280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb9afe1310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcb9afe13a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcb9afe1430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb9afe14c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcb9afe1550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb9afe15e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb9afe1670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb9afe1700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fcb9afdb600>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670353602564424573,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYwYLxI85a6WyPeOi/rZjXv9qm6/kwAugAAgD8AAIA/zTcXvVyjfbrjK5s6OmiVtTeA1jnQOLW5AACAPwAAgD/Ac2++vxqgP9FJzL7OVcO+iDlMvjbYn7wAAAAAAAAAAADs872t4l0/SNRVvSoqkr7dxIO9ZgpbPQAAAAAAAAAAOlFZPkOrqj7Li5O+9Rlpvqyvmr0mb/K8AAAAAAAAAAAzktA8tlMUvA9ZML6m/4K9aUPBOx51Jj4AAIA/AACAP5pynTyu2a+6LfpHO7zXHzaORvo54NZkugAAgD8AAIA/ow2fPvuZAz9UQzq9bqSGvrl7/z0lV5y9AAAAAAAAAACGDzW+pijOPs1uyDxu4Zy+1OI9ugWZfz0AAAAAAAAAAGbWDj1ROZQ/0PoAPvk9tL4PA4w9KLt0PQAAAAAAAAAA5lQqvRSMgboY3oi5FsuFtLPe9bkjoZ84AACAPwAAgD8tMQi+13mHPk5Jjb0ud3e+nmYVPVjCpzsAAAAAAAAAAOavvb10gRw+3pFDvY54HL49cE29Dr8NPQAAAAAAAAAAzdzCug3iYT6GfxM9RUGBvvo1hT3MsLm6AAAAAAAAAABATVI+2XgJP2r+LL4/A5u+6VCAPb5UTb0AAAAAAAAAAK0AGj63fAQ/Rj9FvmH6Or5y9aO8iINcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgctjzcjVZECUhpRSlIwBbJRN6AOMAXSUR0CSciaXa8HwdX2UKGgGaAloD0MIBcB4Bk3LcECUhpRSlGgVTdQCaBZHQJKK5Jg9eQd1fZQoaAZoCWgPQwgw9l580SRhQJSGlFKUaBVN6ANoFkdAkou5cX3xnXV9lChoBmgJaA9DCF1Std0Elm5AlIaUUpRoFU0NAmgWR0CSkcyIYWLxdX2UKGgGaAloD0MIz0wwnCtHcECUhpRSlGgVTVYCaBZHQJKSOQJXyRV1fZQoaAZoCWgPQwiOA6+WO39dQJSGlFKUaBVN6ANoFkdAkpMvyf+S83V9lChoBmgJaA9DCBdFD3yMSGxAlIaUUpRoFU16A2gWR0CSk9YXO4XodX2UKGgGaAloD0MIzAna5HAxbECUhpRSlGgVTUUBaBZHQJKUu4+bExZ1fZQoaAZoCWgPQwg25nXE4RpwQJSGlFKUaBVN+gJoFkdAkpUt+TeO43V9lChoBmgJaA9DCHIz3IBPCm9AlIaUUpRoFU1AA2gWR0CSmZi48U22dX2UKGgGaAloD0MIXRjpRe1CNUCUhpRSlGgVS/FoFkdAkp23PE87p3V9lChoBmgJaA9DCLH9ZIwPQmFAlIaUUpRoFU3oA2gWR0CSnmlFc6eYdX2UKGgGaAloD0MI0zHnGbvxcUCUhpRSlGgVTYABaBZHQJKeiN83Mpx1fZQoaAZoCWgPQwjXprG9lnBxQJSGlFKUaBVNMgFoFkdAkqJBTwUg0XV9lChoBmgJaA9DCCoAxjPopmNAlIaUUpRoFU3oA2gWR0CSoqfp2U0OdX2UKGgGaAloD0MI/vFetbJTbUCUhpRSlGgVTUcBaBZHQJKlM94eLeh1fZQoaAZoCWgPQwgEWrqCbbxvQJSGlFKUaBVNvgJoFkdAkqYfvjOs1nV9lChoBmgJaA9DCEWhZd0/PiVAlIaUUpRoFU0EAWgWR0CSpkpeu3c6dX2UKGgGaAloD0MIT7FqEOYQTkCUhpRSlGgVS/doFkdAkqmSYb83uXV9lChoBmgJaA9DCDyGx37WJnFAlIaUUpRoFU3oAmgWR0CSqchpQDV6dX2UKGgGaAloD0MI1A/qIoVmP0CUhpRSlGgVS/RoFkdAkqouIAOrhnV9lChoBmgJaA9DCAbX3NH/F1dAlIaUUpRoFU3oA2gWR0CSrVBF/hESdX2UKGgGaAloD0MIsU0qGmtwYECUhpRSlGgVTegDaBZHQJKu0dFOO811fZQoaAZoCWgPQwj5hy09mmZuQJSGlFKUaBVNawNoFkdAkq/RvaURnXV9lChoBmgJaA9DCLIN3IH65HBAlIaUUpRoFU1WAmgWR0CSsGNL127ndX2UKGgGaAloD0MIA0Lr4YuScECUhpRSlGgVTX8CaBZHQJKzH8XN1Qt1fZQoaAZoCWgPQwjNzqJ3KmwwQJSGlFKUaBVL9WgWR0CStNbSZ0CBdX2UKGgGaAloD0MIxhnDnCCVcUCUhpRSlGgVTbIBaBZHQJK2zV9Wp611fZQoaAZoCWgPQwgmcyzvqgcZQJSGlFKUaBVL62gWR0CSuEWt2cJ/dX2UKGgGaAloD0MIsoS1MXZnckCUhpRSlGgVTV4DaBZHQJLNYEfT1Ch1fZQoaAZoCWgPQwjJWG3+X9llQJSGlFKUaBVN6ANoFkdAks5Bm5DqnnV9lChoBmgJaA9DCE7yI37F2i5AlIaUUpRoFUv3aBZHQJLQ4cp9ZzR1fZQoaAZoCWgPQwjpmPOMPR9wQJSGlFKUaBVNvwJoFkdAktGhH9WIXXV9lChoBmgJaA9DCIeGxairgnFAlIaUUpRoFU1ZAWgWR0CS0srmyPdVdX2UKGgGaAloD0MIbY/ecB80bUCUhpRSlGgVTXYCaBZHQJLV7nzQNTd1fZQoaAZoCWgPQwgpPGh2XQRyQJSGlFKUaBVNVQNoFkdAkt3ZntfG/HV9lChoBmgJaA9DCPkupS6ZsmpAlIaUUpRoFU3PAWgWR0CS3oXvphWpdX2UKGgGaAloD0MIgLdAguLPO0CUhpRSlGgVS+xoFkdAkt/ELx7RfHV9lChoBmgJaA9DCOf7qfHSi29AlIaUUpRoFU3kAmgWR0CS4I29tdiVdX2UKGgGaAloD0MIpx/URcq1cECUhpRSlGgVTW4BaBZHQJLgwwi7kGR1fZQoaAZoCWgPQwikiuJV1s9tQJSGlFKUaBVNXwFoFkdAkuDoJeE7GXV9lChoBmgJaA9DCAiwyK+fzm1AlIaUUpRoFU26AWgWR0CS4VXhOxjbdX2UKGgGaAloD0MIwjI2dLOhb0CUhpRSlGgVTYMCaBZHQJLiLHKfWc11fZQoaAZoCWgPQwiU+NwJ9gpnQJSGlFKUaBVN6ANoFkdAkuexRqGlAXV9lChoBmgJaA9DCHb+7bJfR1lAlIaUUpRoFU3oA2gWR0CS6NmRvFWGdX2UKGgGaAloD0MIsHH9uz6z/j+UhpRSlGgVS/JoFkdAkulRoEjgRHV9lChoBmgJaA9DCGJM+nspwDZAlIaUUpRoFUvoaBZHQJLqYV6/qPh1fZQoaAZoCWgPQwiLql/pfCQzQJSGlFKUaBVL4GgWR0CS7HH93r2QdX2UKGgGaAloD0MIFHr9SfzoYUCUhpRSlGgVTegDaBZHQJLs82BJ7LN1fZQoaAZoCWgPQwhntiv0AaJwQJSGlFKUaBVNQQJoFkdAku6IE0SAY3V9lChoBmgJaA9DCOZXc4Dg12VAlIaUUpRoFU3oA2gWR0CS8dEnLJS0dX2UKGgGaAloD0MIKovCLooxbECUhpRSlGgVTaIBaBZHQJLyUhC+lCV1fZQoaAZoCWgPQwjQl97+3NluQJSGlFKUaBVNmQFoFkdAkvP+HzpX63V9lChoBmgJaA9DCDNrKSDt6zZAlIaUUpRoFUvoaBZHQJL1lpsXSBt1fZQoaAZoCWgPQwichxOYTmBhQJSGlFKUaBVN6ANoFkdAkvpO7g88tHV9lChoBmgJaA9DCMlYbf4fX3FAlIaUUpRoFU0qAmgWR0CS+zU70WdmdX2UKGgGaAloD0MITz3S4LZncUCUhpRSlGgVTfQCaBZHQJL7rMQmNR51fZQoaAZoCWgPQwiNfjScMocqQJSGlFKUaBVL8GgWR0CS/hm1IAfddX2UKGgGaAloD0MIRx0dV2N0cECUhpRSlGgVTRQCaBZHQJMU7h99c8l1fZQoaAZoCWgPQwjoFroSgW9uQJSGlFKUaBVNigFoFkdAkxUsjFAE+3V9lChoBmgJaA9DCCTW4lMAHnFAlIaUUpRoFU3bA2gWR0CTFTv+OwPidX2UKGgGaAloD0MIjPLMy+F5aUCUhpRSlGgVTUEBaBZHQJMXLTSb6P91fZQoaAZoCWgPQwjd6jnp/bBxQJSGlFKUaBVNbgFoFkdAkxe4sVclgXV9lChoBmgJaA9DCK67earDfG5AlIaUUpRoFU0ZAmgWR0CTGezvqkdndX2UKGgGaAloD0MIYocx6a+NcECUhpRSlGgVTWwBaBZHQJMaxnUUfxN1fZQoaAZoCWgPQwgIH0q0ZDBsQJSGlFKUaBVNKgJoFkdAkxsu8K5TZXV9lChoBmgJaA9DCLaA0Hr4XjhAlIaUUpRoFU0DAWgWR0CTG06N2ki2dX2UKGgGaAloD0MIKes3E9OJM0CUhpRSlGgVTRABaBZHQJMbe/fwZwZ1fZQoaAZoCWgPQwiKzFzg8uBEQJSGlFKUaBVL6GgWR0CTH4lUZNwjdX2UKGgGaAloD0MIecn/5G/TckCUhpRSlGgVTakDaBZHQJMgmw8nuzB1fZQoaAZoCWgPQwii0R3EzmNfQJSGlFKUaBVN6ANoFkdAkyLwrxy4nXV9lChoBmgJaA9DCDXvOEVHJHJAlIaUUpRoFU00A2gWR0CTIy3gUDdQdX2UKGgGaAloD0MIhCugUI/wcECUhpRSlGgVTU0BaBZHQJMkPmMfigl1fZQoaAZoCWgPQwhe9BWkGT1xQJSGlFKUaBVNOwFoFkdAkyWIyO7xu3V9lChoBmgJaA9DCLwhjQrcxXBAlIaUUpRoFU3SAWgWR0CTJtKoAGSqdX2UKGgGaAloD0MIqG4u/rY5T0CUhpRSlGgVTQUBaBZHQJMnbRzBAOd1fZQoaAZoCWgPQwhB8Pj2LrltQJSGlFKUaBVNagFoFkdAkyhFPFefI3V9lChoBmgJaA9DCICZ7+AnhW5AlIaUUpRoFU1RAmgWR0CTKVrDqGDddX2UKGgGaAloD0MIuHaiJGTOcECUhpRSlGgVTckBaBZHQJMqODdxhlV1fZQoaAZoCWgPQwiXdJSDGQhxQJSGlFKUaBVNTAFoFkdAkypGWMS9NHV9lChoBmgJaA9DCJZBtcHJmHFAlIaUUpRoFU1hAWgWR0CTKrWsijcmdX2UKGgGaAloD0MIIT8buW6bVkCUhpRSlGgVTegDaBZHQJMrwrnTy8V1fZQoaAZoCWgPQwiJB5RNuVBwQJSGlFKUaBVNIQFoFkdAky9vWQOnVHV9lChoBmgJaA9DCFCOAkTBo2tAlIaUUpRoFU1tAWgWR0CTL65eJHiFdX2UKGgGaAloD0MI3Esao3UUEMCUhpRSlGgVS+ZoFkdAkzAzeXRgJHV9lChoBmgJaA9DCB9N9WQ+XnBAlIaUUpRoFU0hAmgWR0CTMY/0dzXCdX2UKGgGaAloD0MIETgSaLDxKECUhpRSlGgVTQ4BaBZHQJMyXB+F10V1fZQoaAZoCWgPQwgjwOldPO9vQJSGlFKUaBVNSwJoFkdAkzSB9Tgl4XV9lChoBmgJaA9DCOQQcXPqQXBAlIaUUpRoFU0gAWgWR0CTNOvx6OYIdX2UKGgGaAloD0MIIR6JlycIbUCUhpRSlGgVTUcBaBZHQJM3Uo/iYLN1fZQoaAZoCWgPQwjRB8vYEHxyQJSGlFKUaBVNxQFoFkdAkzhX4TK1X3V9lChoBmgJaA9DCF35LM+Df0RAlIaUUpRoFUvgaBZHQJM4rej2zv91fZQoaAZoCWgPQwhEh8CRwOJvQJSGlFKUaBVNRAFoFkdAkzjocaOxS3V9lChoBmgJaA9DCHtNDwrK4HFAlIaUUpRoFU2GAWgWR0CTOeHSnccmdX2UKGgGaAloD0MIb59VZgqdcECUhpRSlGgVTYQBaBZHQJM6OsXBP9F1fZQoaAZoCWgPQwhpOjsZ3AVxQJSGlFKUaBVNEwJoFkdAkzpQYpDu0HV9lChoBmgJaA9DCB+DFadaWxHAlIaUUpRoFUvfaBZHQJM6hHqeK9B1fZQoaAZoCWgPQwgst7QaEs1vQJSGlFKUaBVN9wFoFkdAkzwbah6By3V9lChoBmgJaA9DCLyuX7Cba25AlIaUUpRoFU2uAmgWR0CTPPhkAggYdX2UKGgGaAloD0MItOVciuuTcECUhpRSlGgVTY4CaBZHQJM9nMA3kxR1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41f695e262a05116eb3cdb8957f5984ad06bf12978a7a44bf47c91627f8770d7
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86015fb0ab6469ebac61113c35bcce12689740a3695cd2af1b2d8baeb616920f
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (235 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 235.42339364783265, "std_reward": 24.725290077349552, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-06T19:31:28.163925"}