add handler, README
Browse files- .gitattributes +34 -0
- README.md +50 -0
- handler.py +46 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: creativeml-openrail-m
|
3 |
+
tags:
|
4 |
+
- stable-diffusion
|
5 |
+
- stable-diffusion-diffusers
|
6 |
+
- endpoints-template
|
7 |
+
duplicated_from: philschmid/stable-diffusion-v1-4-endpoints
|
8 |
+
---
|
9 |
+
# Fork of [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)
|
10 |
+
> Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input.
|
11 |
+
> For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion with 🧨Diffusers blog](https://huggingface.co/blog/stable_diffusion).
|
12 |
+
For more information about the model, license and limitations check the original model card at [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4).
|
13 |
+
### License (CreativeML OpenRAIL-M)
|
14 |
+
The full license can be found here: https://huggingface.co/spaces/CompVis/stable-diffusion-license
|
15 |
+
---
|
16 |
+
This repository implements a custom `handler` task for `text-to-image` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints/blob/main/handler.py).
|
17 |
+
There is also a [notebook](https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints/blob/main/create_handler.ipynb) included, on how to create the `handler.py`
|
18 |
+
### expected Request payload
|
19 |
+
```json
|
20 |
+
{
|
21 |
+
"inputs": "A prompt used for image generation"
|
22 |
+
}
|
23 |
+
```
|
24 |
+
below is an example on how to run a request using Python and `requests`.
|
25 |
+
## Run Request
|
26 |
+
```python
|
27 |
+
import json
|
28 |
+
from typing import List
|
29 |
+
import requests as r
|
30 |
+
import base64
|
31 |
+
from PIL import Image
|
32 |
+
from io import BytesIO
|
33 |
+
ENDPOINT_URL = ""
|
34 |
+
HF_TOKEN = ""
|
35 |
+
# helper decoder
|
36 |
+
def decode_base64_image(image_string):
|
37 |
+
base64_image = base64.b64decode(image_string)
|
38 |
+
buffer = BytesIO(base64_image)
|
39 |
+
return Image.open(buffer)
|
40 |
+
def predict(prompt:str=None):
|
41 |
+
payload = {"inputs": code_snippet,"parameters": parameters}
|
42 |
+
response = r.post(
|
43 |
+
ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json={"inputs": prompt}
|
44 |
+
)
|
45 |
+
resp = response.json()
|
46 |
+
return decode_base64_image(resp["image"])
|
47 |
+
prediction = predict(
|
48 |
+
prompt="the first animal on the mars"
|
49 |
+
)
|
50 |
+
```
|
handler.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
from io import BytesIO
|
3 |
+
from typing import Dict, List, Any
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from diffusers import StableDiffusionPipeline
|
8 |
+
|
9 |
+
|
10 |
+
REPO_ID = "runwayml/stable-diffusion-v1-5"
|
11 |
+
|
12 |
+
|
13 |
+
# helper decoder
|
14 |
+
def decode_base64_image(image_string):
|
15 |
+
base64_image = base64.b64decode(image_string)
|
16 |
+
buffer = BytesIO(base64_image)
|
17 |
+
return Image.open(buffer)
|
18 |
+
|
19 |
+
|
20 |
+
class EndpointHandler:
|
21 |
+
def __init__(self, path=""):
|
22 |
+
self.pipe = StableDiffusionPipeline.from_pretrained("./stable-diffusion-v1-5")
|
23 |
+
# self.pipe = self.pipe.to("cuda")
|
24 |
+
|
25 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
26 |
+
"""
|
27 |
+
Args:
|
28 |
+
data (:obj:):
|
29 |
+
includes the input data and the parameters for the inference.
|
30 |
+
Return:
|
31 |
+
A :obj:`dict`:. base64 encoded image
|
32 |
+
"""
|
33 |
+
prompts = data.pop("inputs", None)
|
34 |
+
encoded_image = data.pop("image", None)
|
35 |
+
init_image = None
|
36 |
+
if encoded_image:
|
37 |
+
init_image = decode_base64_image(encoded_image)
|
38 |
+
init_image.thumbnail((768, 768))
|
39 |
+
image = self.pipe(prompts, init_image=init_image).images[0]
|
40 |
+
|
41 |
+
# encode image as base 64
|
42 |
+
buffered = BytesIO()
|
43 |
+
image.save(buffered, format="png")
|
44 |
+
|
45 |
+
# post process the prediction
|
46 |
+
return {"image": buffered.getvalue()}
|