a2c-PandaReachDense-v3 / config.json
EladAssia's picture
Initial commit
e6602ec
raw
history blame contribute delete
No virus
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cecd940c1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cecd9422140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696179911444030590, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXhpJvYbi9T4zt0a+XhpJvYbi9T4zt0a+iuDdv8NnyT90Chs/XhpJvYbi9T4zt0a+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm5EavxhRPj8RbJ2/w5Sav+b6Aj7qA76+3t2rv4SNaD8jObE9awINPihkMD8BuKu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABeGkm9huL1PjO3Rr5Tkem/5V7KP5Ecsb9eGkm9huL1PjO3Rr5Tkem/5V7KP5Ecsb+K4N2/w2fJP3QKGz+cV6G/Iwpmv2kkW79eGkm9huL1PjO3Rr5Tkem/5V7KP5Ecsb+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.04909741 0.48024386 -0.19405822]\n [-0.04909741 0.48024386 -0.19405822]\n [-1.7334149 1.573479 0.60562825]\n [-0.04909741 0.48024386 -0.19405822]]", "desired_goal": "[[-0.60378426 0.7434249 -1.2298604 ]\n [-1.2076648 0.12791023 -0.3711236 ]\n [-1.3427083 0.90840936 0.08653476]\n [ 0.13770454 0.68902826 -1.3415529 ]]", "observation": "[[-0.04909741 0.48024386 -0.19405822 -1.8247474 1.581021 -1.3836843 ]\n [-0.04909741 0.48024386 -0.19405822 -1.8247474 1.581021 -1.3836843 ]\n [-1.7334149 1.573479 0.60562825 -1.2604861 -0.8985922 -0.8560243 ]\n [-0.04909741 0.48024386 -0.19405822 -1.8247474 1.581021 -1.3836843 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADowKPsD/Uj2igis9rOMAPgu30z3zf+M9OUjUvDvk2D1lL5E+lZxovVTxEj4IAsU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13529989 0.05151343 0.04187263]\n [ 0.1258685 0.10337647 0.11108389]\n [-0.02591334 0.10590407 0.28356472]\n [-0.05678995 0.14349872 0.09619528]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9sEB8x9G7WMAWyUSwSMAXSUR0Ck505VOsT4dX2UKGgGR7/WQSBbwBo3aAdLBGgIR0Ck55Moc7yQdX2UKGgGR7/BokiUxEfDaAdLAmgIR0Ck5xcK5TZQdX2UKGgGR7/QLy+Yc/+saAdLA2gIR0Ck5tomG/N8dX2UKGgGR7/BbmlqJuVHaAdLAmgIR0Ck51lDfFaTdX2UKGgGR7+y+i8FpwjuaAdLAmgIR0Ck5yCjDbaidX2UKGgGR7/QGQjlgc94aAdLA2gIR0Ck56D5TIeYdX2UKGgGR7+5zS1E3KjjaAdLAmgIR0Ck52KXfIjodX2UKGgGR7/aa8Hv+fh/aAdLBGgIR0Ck5uwFs54odX2UKGgGR7/B0+TvAoG6aAdLAmgIR0Ck520ZWJaadX2UKGgGR7/GTGo73fygaAdLA2gIR0Ck5y+YD1XedX2UKGgGR7/T+sHSnccmaAdLA2gIR0Ck5vqJ/G2kdX2UKGgGR7/VWO6unuRcaAdLBWgIR0Ck57fqHGjsdX2UKGgGR7/Sle4TbnHOaAdLA2gIR0Ck53mJ3xFzdX2UKGgGR7+2X6ZYxL00aAdLAmgIR0Ck5wLDye7MdX2UKGgGR7/YBRyfcvduaAdLBWgIR0Ck50b3oLXudX2UKGgGR7/LEYwZflZHaAdLA2gIR0Ck54i4jKPodX2UKGgGR7/WH09QoCuEaAdLA2gIR0Ck5xHcL0BfdX2UKGgGR7/bxmkFfReDaAdLBWgIR0Ck589C3PRidX2UKGgGR7+8aLn9vS+haAdLAmgIR0Ck55D1GsmwdX2UKGgGR7/FPDYRNATqaAdLAmgIR0Ck55seGO+7dX2UKGgGR7/Zkka/ATIvaAdLBWgIR0Ck512d/axpdX2UKGgGR7/L6D5CWu5jaAdLA2gIR0Ck5yCxu89PdX2UKGgGR7/SQizLOiWWaAdLA2gIR0Ck5944yXUpdX2UKGgGR7+jeyiVSn+AaAdLAWgIR0Ck52ItlI3BdX2UKGgGR7/B1pTMqz7eaAdLAmgIR0Ck56PsqrimdX2UKGgGR7+8VHnU2DQJaAdLAmgIR0Ck5ylFtsN2dX2UKGgGR7+1ygf2bobGaAdLAmgIR0Ck5+a5PM0QdX2UKGgGR7+56+nIhhYvaAdLAmgIR0Ck56wgTyrgdX2UKGgGR7/Lspobn5i3aAdLA2gIR0Ck526d+XqrdX2UKGgGR7/LlGwzLwF1aAdLA2gIR0Ck5zgtWdVedX2UKGgGR7++0jTrmhduaAdLAmgIR0Ck53oXTEzgdX2UKGgGR7/Z2W6bvw3HaAdLBGgIR0Ck5/rFXJYDdX2UKGgGR7+TriVB2OhkaAdLAWgIR0Ck5/8BEKE4dX2UKGgGR7/R3Gn4wh4daAdLBGgIR0Ck58CdBjWkdX2UKGgGR7/Ryc0+C9RKaAdLA2gIR0Ck50YetCAudX2UKGgGR7+Svkiliz9kaAdLAWgIR0Ck58UQ04zadX2UKGgGR7+XDFZPl+3IaAdLAWgIR0Ck50pq7AcldX2UKGgGR7+7S+g13t8eaAdLAmgIR0Ck589dVvMsdX2UKGgGR7/cRvWH1vl2aAdLBWgIR0Ck55HFglWwdX2UKGgGR7/ZEyLyc0+DaAdLBGgIR0Ck6BKQiiZfdX2UKGgGR7/Rkqc3EQ5FaAdLA2gIR0Ck51mG/N7jdX2UKGgGR7/AOGTLW7OFaAdLAmgIR0Ck59h0p3HJdX2UKGgGR7+mSKWLP2PDaAdLAWgIR0Ck5138wYcedX2UKGgGR7+6xqwhW5pbaAdLAmgIR0Ck6Bt5le4TdX2UKGgGR7+5lPJq7AclaAdLAmgIR0Ck52io86mwdX2UKGgGR7/SEHt4RmK7aAdLA2gIR0Ck5+ekHlfadX2UKGgGR7/TjynUDuBuaAdLBWgIR0Ck56okiUxEdX2UKGgGR7/GLYPGyX2NaAdLA2gIR0Ck6CqdH2AYdX2UKGgGR7+xFVktmL9/aAdLAmgIR0Ck5/Bg/keZdX2UKGgGR7/QU9pyp71JaAdLA2gIR0Ck53XJo0yhdX2UKGgGR7+6imEXcgyNaAdLAmgIR0Ck6DNuUD+zdX2UKGgGR7+jk6tDD0lJaAdLAWgIR0Ck53pqynk1dX2UKGgGR7/YronrpqyoaAdLBGgIR0Ck57349HMEdX2UKGgGR7/Ozch1Tzd2aAdLA2gIR0Ck6AAOrhitdX2UKGgGR7/CzsyBTXJ6aAdLAmgIR0Ck54b4zrNXdX2UKGgGR7+5zbN8ma6SaAdLAmgIR0Ck58sNtqHodX2UKGgGR7/TcxTKkl/paAdLBGgIR0Ck6EyAYpDvdX2UKGgGR7/BGViWmgrZaAdLAmgIR0Ck6A4qoZQ6dX2UKGgGR7/KAwwj+rEMaAdLA2gIR0Ck55k9t/FzdX2UKGgGR7/F+irT6SDAaAdLAmgIR0Ck6Fk5hjOLdX2UKGgGR7+yQtBfKISEaAdLAmgIR0Ck6BrncL0BdX2UKGgGR7/XEZzgdfb9aAdLBGgIR0Ck5+It16mgdX2UKGgGR7+ykk8ifQKKaAdLAmgIR0Ck6CQa72+PdX2UKGgGR7/TRVp9JBgNaAdLA2gIR0Ck6GbEpAlfdX2UKGgGR7/HhNM495hSaAdLA2gIR0Ck5+8CgbqAdX2UKGgGR7/b4t6HCXQdaAdLBWgIR0Ck57I5HVgAdX2UKGgGR7/FB7/n4fwJaAdLAmgIR0Ck6HIvSMLndX2UKGgGR7/DE2pAD7qIaAdLA2gIR0Ck6DP0qYqodX2UKGgGR7+zY7JW/8EWaAdLAmgIR0Ck6HrDqGDddX2UKGgGR7/DMGorFwT/aAdLAmgIR0Ck6DxmseXBdX2UKGgGR7/PB+F10T11aAdLA2gIR0Ck5/7gjyFxdX2UKGgGR7/NS0jTrmheaAdLA2gIR0Ck58IGIKtxdX2UKGgGR7+7fj0cwQDnaAdLAmgIR0Ck6AdiUgSwdX2UKGgGR7/O64lQdjoZaAdLA2gIR0Ck6IpDE3sHdX2UKGgGR7/XWFvhqCYkaAdLBGgIR0Ck59VU+9rXdX2UKGgGR7/e/+KjzqbCaAdLBWgIR0Ck6FR3NcGDdX2UKGgGR7/HXmvGIbfhaAdLA2gIR0Ck6BcgIQe4dX2UKGgGR7/SFlCkXUH6aAdLA2gIR0Ck6JenAIppdX2UKGgGR7/AkAxSHdoGaAdLAmgIR0Ck6B/KZDzAdX2UKGgGR7/SdlNDc/MXaAdLA2gIR0Ck5+L1dxACdX2UKGgGR7+/eTFERaouaAdLAmgIR0Ck6KL8R+SbdX2UKGgGR7/NLwF1SwW4aAdLA2gIR0Ck6GSdnTRZdX2UKGgGR7/HhuO0b961aAdLAmgIR0Ck5+402tMgdX2UKGgGR7/JEYwZflZHaAdLA2gIR0Ck6DAEMb3odX2UKGgGR7/N+so2GZeBaAdLA2gIR0Ck6LHogV45dX2UKGgGR7/ImIj4YaYNaAdLA2gIR0Ck6HOXmeUZdX2UKGgGR7/VuOS4e9zwaAdLA2gIR0Ck5/083dbgdX2UKGgGR7/LyEL6UJOWaAdLA2gIR0Ck6EERradudX2UKGgGR7/Tck+otL+QaAdLA2gIR0Ck6IMQmNR4dX2UKGgGR7/Z1hsqJ/G3aAdLBGgIR0Ck6Maq0dBCdX2UKGgGR7/MA4GUwBYFaAdLA2gIR0Ck6A2YnfEXdX2UKGgGR7+7C3w1BMSLaAdLAmgIR0Ck6IylWOp9dX2UKGgGR7/RGNrCWNWEaAdLA2gIR0Ck6E9ZJTVEdX2UKGgGR7+5yyUs4DLbaAdLAmgIR0Ck6JelCTlldX2UKGgGR7/QG8274BV/aAdLA2gIR0Ck6B0DEFW5dX2UKGgGR7/TNBWxQizLaAdLA2gIR0Ck6F4pMHrydX2UKGgGR7/fFPBSDRMOaAdLBmgIR0Ck6OKrBCUpdX2UKGgGR7/KGC7K7qY7aAdLA2gIR0Ck6KRd6cAjdX2UKGgGR7/LVDKHO8kEaAdLA2gIR0Ck6CnQyAQQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}