Ekjaer commited on
Commit
5260553
·
1 Parent(s): 0ca3d5d

pushing files to the repo from the example!

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. config.json +2 -1
  3. init_repo_MLstructureMining.py +5 -0
README.md CHANGED
@@ -1269,7 +1269,7 @@ The model is trained with below hyperparameters.
1269
 
1270
  The model plot is below.
1271
 
1272
- <style>#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd {color: black;background-color: white;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd pre{padding: 0;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-toggleable {background-color: white;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-estimator:hover {background-color: #d4ebff;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-item {z-index: 1;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-parallel-item:only-child::after {width: 0;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd div.sk-text-repr-fallback {display: none;}</style><div id="sk-8c7bf6d4-3996-491a-9ee5-f719a38292dd" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method=&#x27;auto&#x27;, validate_parameters=1, verbosity=None)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="547c744a-d71c-41f5-a864-1351841dde6e" type="checkbox" checked><label for="547c744a-d71c-41f5-a864-1351841dde6e" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method=&#x27;auto&#x27;, validate_parameters=1, verbosity=None)</pre></div></div></div></div></div>
1273
 
1274
  ## Evaluation Results
1275
 
 
1269
 
1270
  The model plot is below.
1271
 
1272
+ <style>#sk-f64fd6a0-a686-4957-adf1-8209c466f428 {color: black;background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 pre{padding: 0;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-toggleable {background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator:hover {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-item {z-index: 1;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item:only-child::after {width: 0;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-text-repr-fallback {display: none;}</style><div id="sk-f64fd6a0-a686-4957-adf1-8209c466f428" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method=&#x27;auto&#x27;, validate_parameters=1, verbosity=None)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e5865982-53b6-475b-9bbf-6ee40514c813" type="checkbox" checked><label for="e5865982-53b6-475b-9bbf-6ee40514c813" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method=&#x27;auto&#x27;, validate_parameters=1, verbosity=None)</pre></div></div></div></div></div>
1273
 
1274
  ## Evaluation Results
1275
 
config.json CHANGED
@@ -1817,5 +1817,6 @@
1817
  "file": "xgb_model_bayse_optimization_00000.bin"
1818
  },
1819
  "task": "tabular-classification"
1820
- }
 
1821
  }
 
1817
  "file": "xgb_model_bayse_optimization_00000.bin"
1818
  },
1819
  "task": "tabular-classification"
1820
+ },
1821
+ "model_type": "xgboost"
1822
  }
init_repo_MLstructureMining.py CHANGED
@@ -60,6 +60,11 @@ model_card.add(**{"model_type": "xgboost"})
60
  model_card.save(Path(local_repo) / "README.md")
61
  model_card.save("README.md")
62
 
 
 
 
 
 
63
 
64
  # you can put your own token here, or set it as an environment variable before
65
  # running this script.
 
60
  model_card.save(Path(local_repo) / "README.md")
61
  model_card.save("README.md")
62
 
63
+ with open(os.path.join(local_repo, "config.json"), "r") as file:
64
+ data = json.load(file)
65
+ data["model_type"] = "xgboost"
66
+ with open(os.path.join(local_repo, "config.json"), "w") as file:
67
+ json.dump(data, file, indent=4)
68
 
69
  # you can put your own token here, or set it as an environment variable before
70
  # running this script.