Edresson commited on
Commit
1842ebd
1 Parent(s): ac430a7

Add checkpoints

Browse files
.gitattributes CHANGED
@@ -1,6 +1,7 @@
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
  *.ftz filter=lfs diff=lfs merge=lfs -text
6
  *.gz filter=lfs diff=lfs merge=lfs -text
@@ -16,11 +17,10 @@
16
  *.pt filter=lfs diff=lfs merge=lfs -text
17
  *.pth filter=lfs diff=lfs merge=lfs -text
18
  *.rar filter=lfs diff=lfs merge=lfs -text
19
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
  *.tar.* filter=lfs diff=lfs merge=lfs -text
21
  *.tflite filter=lfs diff=lfs merge=lfs -text
22
  *.tgz filter=lfs diff=lfs merge=lfs -text
23
- *.wasm filter=lfs diff=lfs merge=lfs -text
24
  *.xz filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
  *.bz2 filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
 
17
  *.pt filter=lfs diff=lfs merge=lfs -text
18
  *.pth filter=lfs diff=lfs merge=lfs -text
19
  *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
  *.tar.* filter=lfs diff=lfs merge=lfs -text
22
  *.tflite filter=lfs diff=lfs merge=lfs -text
23
  *.tgz filter=lfs diff=lfs merge=lfs -text
 
24
  *.xz filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ru
3
+ datasets:
4
+ - Common Voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - speech
10
+ - wav2vec2
11
+ - Russian-speech-corpus
12
+ - automatic-speech-recognition
13
+ - speech
14
+ - PyTorch
15
+ license: apache-2.0
16
+ model-index:
17
+ - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset in Russian
18
+ results:
19
+ - task:
20
+ name: Speech Recognition
21
+ type: automatic-speech-recognition
22
+ metrics:
23
+ - name: Test Common Voice 7.0 WER
24
+ type: wer
25
+ value: 74.02
26
+ ---
27
+
28
+ # Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset in Russian
29
+
30
+ [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Russian using a single-speaker dataset.
31
+
32
+
33
+
34
+ # Use this model
35
+
36
+ ```python
37
+
38
+ from transformers import AutoTokenizer, Wav2Vec2ForCTC
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-russian")
41
+
42
+ model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-russian")
43
+ ```
44
+ # Results
45
+ For the results check the [article (Soon)]()
46
+
47
+ # Example test with Common Voice Dataset
48
+
49
+
50
+ ```python
51
+ dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21")
52
+
53
+ resampler = torchaudio.transforms.Resampl(orig_freq=48_000, new_freq=16_000)
54
+
55
+ def map_to_array(batch):
56
+ speech, _ = torchaudio.load(batch["path"])
57
+ batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
58
+ batch["sampling_rate"] = resampler.new_freq
59
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
60
+ return batch
61
+ ```
62
+
63
+ ```python
64
+ ds = dataset.map(map_to_array)
65
+ result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
66
+ print(wer.compute(predictions=result["predicted"], references=result["target"]))
67
+ ```
68
+
all_results.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 133.99,
3
+ "eval_loss": 0.5939580202102661,
4
+ "eval_mem_cpu_alloc_delta": 84615168,
5
+ "eval_mem_cpu_peaked_delta": 163840,
6
+ "eval_mem_gpu_alloc_delta": 0,
7
+ "eval_mem_gpu_peaked_delta": 9191723520,
8
+ "eval_runtime": 26.6646,
9
+ "eval_samples": 500,
10
+ "eval_samples_per_second": 18.751,
11
+ "eval_wer": 0.5386466591166478,
12
+ "init_mem_cpu_alloc_delta": 3938103296,
13
+ "init_mem_cpu_peaked_delta": 805023744,
14
+ "init_mem_gpu_alloc_delta": 1261915136,
15
+ "init_mem_gpu_peaked_delta": 0,
16
+ "train_mem_cpu_alloc_delta": 2171449344,
17
+ "train_mem_cpu_peaked_delta": 24576,
18
+ "train_mem_gpu_alloc_delta": 3778437120,
19
+ "train_mem_gpu_peaked_delta": 10009929728,
20
+ "train_runtime": 115622.8375,
21
+ "train_samples": 6805,
22
+ "train_samples_per_second": 0.042
23
+ }
config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-100k-voxpopuli",
3
+ "activation_dropout": 0.0,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "codevector_dim": 768,
11
+ "contrastive_logits_temperature": 0.1,
12
+ "conv_bias": true,
13
+ "conv_dim": [
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512,
19
+ 512,
20
+ 512
21
+ ],
22
+ "conv_kernel": [
23
+ 10,
24
+ 3,
25
+ 3,
26
+ 3,
27
+ 3,
28
+ 2,
29
+ 2
30
+ ],
31
+ "conv_stride": [
32
+ 5,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2,
37
+ 2,
38
+ 2
39
+ ],
40
+ "ctc_loss_reduction": "mean",
41
+ "ctc_zero_infinity": true,
42
+ "diversity_loss_weight": 0.1,
43
+ "do_stable_layer_norm": true,
44
+ "eos_token_id": 2,
45
+ "feat_extract_activation": "gelu",
46
+ "feat_extract_dropout": 0.0,
47
+ "feat_extract_norm": "layer",
48
+ "feat_proj_dropout": 0.1,
49
+ "feat_quantizer_dropout": 0.0,
50
+ "final_dropout": 0.0,
51
+ "gradient_checkpointing": true,
52
+ "hidden_act": "gelu",
53
+ "hidden_dropout": 0.1,
54
+ "hidden_size": 1024,
55
+ "initializer_range": 0.02,
56
+ "intermediate_size": 4096,
57
+ "layer_norm_eps": 1e-05,
58
+ "layerdrop": 0.0,
59
+ "mask_channel_length": 10,
60
+ "mask_channel_min_space": 1,
61
+ "mask_channel_other": 0.0,
62
+ "mask_channel_prob": 0.0,
63
+ "mask_channel_selection": "static",
64
+ "mask_feature_length": 10,
65
+ "mask_feature_prob": 0.0,
66
+ "mask_time_length": 10,
67
+ "mask_time_min_space": 1,
68
+ "mask_time_other": 0.0,
69
+ "mask_time_prob": 0.05,
70
+ "mask_time_selection": "static",
71
+ "model_type": "wav2vec2",
72
+ "num_attention_heads": 16,
73
+ "num_codevector_groups": 2,
74
+ "num_codevectors_per_group": 320,
75
+ "num_conv_pos_embedding_groups": 16,
76
+ "num_conv_pos_embeddings": 128,
77
+ "num_feat_extract_layers": 7,
78
+ "num_hidden_layers": 24,
79
+ "num_negatives": 100,
80
+ "pad_token_id": 0,
81
+ "proj_codevector_dim": 768,
82
+ "transformers_version": "4.6.1",
83
+ "vocab_size": 39
84
+ }
config_train.json ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "run_name": "Wav2Vec-fine-tuning-TEDx",
3
+ "run_description": "Fine tuning TEDx",
4
+ "seed": 42,
5
+ // AUDIO PARAMS
6
+ "sampling_rate": 16000,
7
+
8
+ // VOCABULARY PARAMETERS
9
+ "vocab":{
10
+ "vocab_path": "example/vocab_example_ru.json", // generic vocab for Portuguese
11
+ "blank": "<pad>", // blank token for padding
12
+ "silence": "|", // token between words
13
+ "unk": "<unk>" // unk token
14
+ },
15
+
16
+ // TRAINING
17
+ "batch_size": 16, // Batch size for training.
18
+ "mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate.
19
+ "early_stop_epochs": 10, // If 0 disabled else Number of epochs for stop training with validation loss dont decrease
20
+ "preprocess_dataset": false, // if true, the dataset will be pre-processed and saved in disk, otherwise the audio files will be loaded in each step. Preprocessing makes training faster, but requires much more disk space.
21
+
22
+ // OPTIMIZER
23
+ "epochs": 140, // total number of epochs to train.
24
+ "lr": 0.00003, // Initial learning rate.
25
+ "gradient_accumulation_steps": 12,
26
+
27
+ // LOGGING
28
+ "logging_steps": 100, // Number of steps to plot.
29
+ "load_best_model_at_end": true,
30
+ "save_total_limit": 3,
31
+ "warmup_ratio": 0.04761904762142857, // 0 disable Ratio of total training steps used for a linear warmup from 0 to learning_rate
32
+ "warmup_steps": 0, // 0 disable Number of steps used for a linear warmup from 0 to learning_rate
33
+
34
+ // DATA LOADING
35
+ "num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are goo
36
+
37
+ // MODEL
38
+ "freeze_feature_extractor": true, // Whether to freeze the feature extractor layers of the model.
39
+ "attention_dropout": 0.1, // The dropout ratio for the attention probabilities.
40
+ "activation_dropout": 0.1, // The dropout ratio for activations inside the fully connected layer.
41
+ "hidden_dropout": 0.1, // The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
42
+ "feat_proj_dropout": 0.1, // The dropout probabilitiy for all 1D convolutional layers in feature extractor.
43
+ "mask_time_prob": 0.05, // Propability of each feature vector along the time axis to be chosen as the start of the vector span to be masked.
44
+ "layerdrop": 0.0, // The LayerDrop probability.
45
+ "gradient_checkpointing": true, // If True, use gradient checkpointing to save memory at the expense of slower backward pass.
46
+
47
+ // ToDo: Implement Time mask and Frequency Mask
48
+ "audio_augmentation":[
49
+ // additive noise and room impulse response (RIR) simulation similar to: https://arxiv.org/pdf/2009.14153.pdf
50
+ {
51
+ "name": "additive",
52
+ "sounds_path":"/raid/datasets/DA/musan/speech/", // download: https://www.openslr.org/17/
53
+ "lru_cache_size": 32, // Maximum size of the LRU cache for storing noise files in memory
54
+ "min_snr_in_db": 13.0,
55
+ "max_snr_in_db": 20.0,
56
+ // "sample_rate": 16000,
57
+ "p": 0.25
58
+ },
59
+
60
+ {
61
+ "name": "additive",
62
+ "sounds_path":"/raid/datasets/DA/musan/music/", // download: https://www.openslr.org/17/
63
+ "lru_cache_size": 32, // Maximum size of the LRU cache for storing noise files in memory
64
+ "min_snr_in_db": 5.0,
65
+ "max_snr_in_db": 15.0,
66
+ // "sample_rate": 16000,
67
+ "p": 0.25
68
+ },
69
+ {
70
+ "name": "additive",
71
+ "sounds_path":"/raid/datasets/DA/musan/noise/", // download: https://www.openslr.org/17/
72
+ "lru_cache_size": 32, // Maximum size of the LRU cache for storing noise files in memory
73
+ "min_snr_in_db": 0.0,
74
+ "max_snr_in_db": 15.0,
75
+ // "sample_rate": 16000,
76
+ "p": 0.25
77
+ },
78
+ // rir filter proposed by: https://ieeexplore.ieee.org/document/7953152
79
+ {
80
+ "name": "rir",
81
+ "ir_path": "/raid/datasets/DA/RIRS_NOISES/simulated_rirs/", // download: https://www.openslr.org/28/
82
+ "lru_cache_size": 128, // Maximum size of the LRU cache for storing noise files in memory
83
+ // "sample_rate": 16000,
84
+ "p": 0.25
85
+ }
86
+ ,
87
+ // {
88
+ // "name": "gain",
89
+ // "min_gain_in_db": -18.0,
90
+ // "max_gain_in_db": 6,
91
+ // "p": 0.25 // propability of apply this method, 0 is disable
92
+ // },
93
+ {
94
+ "name": "pitch_shift",
95
+ "min_semitones": -4,
96
+ "max_semitones": 4,
97
+ "p": 0.25 // propability of apply this method, 0 is disable
98
+ },
99
+ {
100
+ "name": "gaussian",
101
+ "min_amplitude": 0.0001,
102
+ "max_amplitude": 0.001,
103
+ "p": 0.25 // propability of apply this method, 0 is disable
104
+ }
105
+ ],
106
+
107
+ // PATHS
108
+ "output_path": "../checkpoints/YourTTS2ASR/Wav2Vec-voxpopuli/one-speaker/just-TTS/RU/140-epoch-high-bs/",
109
+ // CACHE
110
+ "dataset_cache": "../datasets/ru-cache-high-bs/",
111
+
112
+ // DATASETS
113
+ "datasets":{
114
+ "files_path": "/raid/datasets/Mailabs/ru/", // relative path for audios It's will be join with the CS
115
+ "train":
116
+ [
117
+ // this dicts is pass directly for the load dataset see the documentation: https://huggingface.co/docs/datasets/package_reference/loading_methods.html#datasets.load_dataset
118
+ {
119
+ "name": "csv",
120
+ "path": "csv",
121
+ "data_files": ["/raid/datasets/Mailabs/ru/train_converted.csv"], // csv files
122
+ "text_column": "text",
123
+ "path_column": "file_path"
124
+ }
125
+ ]
126
+ ,
127
+ "devel":
128
+ [
129
+ {
130
+ "name": "csv",
131
+ "path": "csv",
132
+ "data_files": ["/raid/datasets/Mailabs/ru/dev_converted.csv"], // csv files
133
+ "text_column": "text",
134
+ "path_column": "file_path"
135
+ }
136
+ ]
137
+ ,
138
+ "test":
139
+ {
140
+ "name": "csv",
141
+ "path": "csv",
142
+ "data_files": ["/raid/datasets/DA/Common_Voice/cv-corpus-7.0-2021-07-21/ru/test_converted.csv"], // csv files
143
+ "text_column": "text",
144
+ "path_column": "file_path"
145
+ }
146
+
147
+ }//,
148
+ // used only for test
149
+ // "KenLM":{
150
+ // "kenlm_model_path": "../../kenLM/binaries/subtitle/4-gram/lm.binary", // Path for KenLM model
151
+ // "lexicon_path": "example/lexicon.lst", // file with all words for limit the decoder search
152
+ // "beam": 2048,
153
+ // "nbest": 1,
154
+ // "beam_threshold": 25,
155
+ // "lm_weight": 1,
156
+ // "word_score": -1,
157
+ // "sil_weight": 0
158
+ // }
159
+
160
+
161
+
162
+ }
163
+
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 133.99,
3
+ "eval_loss": 0.5939580202102661,
4
+ "eval_mem_cpu_alloc_delta": 84615168,
5
+ "eval_mem_cpu_peaked_delta": 163840,
6
+ "eval_mem_gpu_alloc_delta": 0,
7
+ "eval_mem_gpu_peaked_delta": 9191723520,
8
+ "eval_runtime": 26.6646,
9
+ "eval_samples": 500,
10
+ "eval_samples_per_second": 18.751,
11
+ "eval_wer": 0.5386466591166478
12
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44e5226d711e2864f354aa456695746a9d041ccdc97af1bc4686429225400b57
3
+ size 1262083569
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|"}
train_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 133.99,
3
+ "init_mem_cpu_alloc_delta": 3938103296,
4
+ "init_mem_cpu_peaked_delta": 805023744,
5
+ "init_mem_gpu_alloc_delta": 1261915136,
6
+ "init_mem_gpu_peaked_delta": 0,
7
+ "train_mem_cpu_alloc_delta": 2171449344,
8
+ "train_mem_cpu_peaked_delta": 24576,
9
+ "train_mem_gpu_alloc_delta": 3778437120,
10
+ "train_mem_gpu_peaked_delta": 10009929728,
11
+ "train_runtime": 115622.8375,
12
+ "train_samples": 6805,
13
+ "train_samples_per_second": 0.042
14
+ }
trainer_state.json ADDED
@@ -0,0 +1,1377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.5304960012435913,
3
+ "best_model_checkpoint": "../checkpoints/YourTTS2ASR/Wav2Vec-voxpopuli/one-speaker/just-TTS/RU/140-epoch-high-bs/checkpoint-4340",
4
+ "epoch": 133.98591549295776,
5
+ "global_step": 4690,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.03,
12
+ "learning_rate": 1.282051282051282e-07,
13
+ "loss": 12.6527,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.99,
18
+ "eval_loss": 17.671436309814453,
19
+ "eval_runtime": 26.4755,
20
+ "eval_samples_per_second": 18.885,
21
+ "eval_wer": 1.0060872027180068,
22
+ "step": 35
23
+ },
24
+ {
25
+ "epoch": 1.99,
26
+ "eval_loss": 15.852593421936035,
27
+ "eval_runtime": 26.5339,
28
+ "eval_samples_per_second": 18.844,
29
+ "eval_wer": 1.0018403171007928,
30
+ "step": 70
31
+ },
32
+ {
33
+ "epoch": 2.85,
34
+ "learning_rate": 1.2435897435897436e-05,
35
+ "loss": 17.6404,
36
+ "step": 100
37
+ },
38
+ {
39
+ "epoch": 2.99,
40
+ "eval_loss": 10.858827590942383,
41
+ "eval_runtime": 26.6038,
42
+ "eval_samples_per_second": 18.794,
43
+ "eval_wer": 1.0,
44
+ "step": 105
45
+ },
46
+ {
47
+ "epoch": 3.99,
48
+ "eval_loss": 7.959273338317871,
49
+ "eval_runtime": 26.4213,
50
+ "eval_samples_per_second": 18.924,
51
+ "eval_wer": 1.0,
52
+ "step": 140
53
+ },
54
+ {
55
+ "epoch": 4.99,
56
+ "eval_loss": 6.166073799133301,
57
+ "eval_runtime": 26.8692,
58
+ "eval_samples_per_second": 18.609,
59
+ "eval_wer": 1.0,
60
+ "step": 175
61
+ },
62
+ {
63
+ "epoch": 5.7,
64
+ "learning_rate": 2.512820512820513e-05,
65
+ "loss": 9.2135,
66
+ "step": 200
67
+ },
68
+ {
69
+ "epoch": 5.99,
70
+ "eval_loss": 5.027560710906982,
71
+ "eval_runtime": 27.7308,
72
+ "eval_samples_per_second": 18.031,
73
+ "eval_wer": 1.0,
74
+ "step": 210
75
+ },
76
+ {
77
+ "epoch": 6.99,
78
+ "eval_loss": 4.288309574127197,
79
+ "eval_runtime": 26.9272,
80
+ "eval_samples_per_second": 18.569,
81
+ "eval_wer": 1.0,
82
+ "step": 245
83
+ },
84
+ {
85
+ "epoch": 7.99,
86
+ "eval_loss": 3.822075128555298,
87
+ "eval_runtime": 26.6029,
88
+ "eval_samples_per_second": 18.795,
89
+ "eval_wer": 1.0,
90
+ "step": 280
91
+ },
92
+ {
93
+ "epoch": 8.56,
94
+ "learning_rate": 2.960137162451779e-05,
95
+ "loss": 5.0261,
96
+ "step": 300
97
+ },
98
+ {
99
+ "epoch": 8.99,
100
+ "eval_loss": 3.5520131587982178,
101
+ "eval_runtime": 26.5759,
102
+ "eval_samples_per_second": 18.814,
103
+ "eval_wer": 1.0,
104
+ "step": 315
105
+ },
106
+ {
107
+ "epoch": 9.99,
108
+ "eval_loss": 3.379794120788574,
109
+ "eval_runtime": 27.8087,
110
+ "eval_samples_per_second": 17.98,
111
+ "eval_wer": 1.0,
112
+ "step": 350
113
+ },
114
+ {
115
+ "epoch": 10.99,
116
+ "eval_loss": 3.283963441848755,
117
+ "eval_runtime": 27.4577,
118
+ "eval_samples_per_second": 18.21,
119
+ "eval_wer": 1.0,
120
+ "step": 385
121
+ },
122
+ {
123
+ "epoch": 11.42,
124
+ "learning_rate": 2.8958422631804546e-05,
125
+ "loss": 3.6533,
126
+ "step": 400
127
+ },
128
+ {
129
+ "epoch": 11.99,
130
+ "eval_loss": 3.2323801517486572,
131
+ "eval_runtime": 27.1971,
132
+ "eval_samples_per_second": 18.384,
133
+ "eval_wer": 1.0,
134
+ "step": 420
135
+ },
136
+ {
137
+ "epoch": 12.99,
138
+ "eval_loss": 3.18682861328125,
139
+ "eval_runtime": 27.2137,
140
+ "eval_samples_per_second": 18.373,
141
+ "eval_wer": 1.0,
142
+ "step": 455
143
+ },
144
+ {
145
+ "epoch": 13.99,
146
+ "eval_loss": 3.1655502319335938,
147
+ "eval_runtime": 26.7209,
148
+ "eval_samples_per_second": 18.712,
149
+ "eval_wer": 1.0,
150
+ "step": 490
151
+ },
152
+ {
153
+ "epoch": 14.28,
154
+ "learning_rate": 2.83154736390913e-05,
155
+ "loss": 3.3493,
156
+ "step": 500
157
+ },
158
+ {
159
+ "epoch": 14.99,
160
+ "eval_loss": 3.1466615200042725,
161
+ "eval_runtime": 27.4367,
162
+ "eval_samples_per_second": 18.224,
163
+ "eval_wer": 1.0,
164
+ "step": 525
165
+ },
166
+ {
167
+ "epoch": 15.99,
168
+ "eval_loss": 3.1380531787872314,
169
+ "eval_runtime": 26.3265,
170
+ "eval_samples_per_second": 18.992,
171
+ "eval_wer": 1.0,
172
+ "step": 560
173
+ },
174
+ {
175
+ "epoch": 16.99,
176
+ "eval_loss": 3.136110305786133,
177
+ "eval_runtime": 26.5152,
178
+ "eval_samples_per_second": 18.857,
179
+ "eval_wer": 1.0,
180
+ "step": 595
181
+ },
182
+ {
183
+ "epoch": 17.14,
184
+ "learning_rate": 2.7672524646378054e-05,
185
+ "loss": 3.2398,
186
+ "step": 600
187
+ },
188
+ {
189
+ "epoch": 17.99,
190
+ "eval_loss": 3.107888698577881,
191
+ "eval_runtime": 27.5531,
192
+ "eval_samples_per_second": 18.147,
193
+ "eval_wer": 1.0,
194
+ "step": 630
195
+ },
196
+ {
197
+ "epoch": 18.99,
198
+ "eval_loss": 3.0973823070526123,
199
+ "eval_runtime": 26.2928,
200
+ "eval_samples_per_second": 19.017,
201
+ "eval_wer": 1.0,
202
+ "step": 665
203
+ },
204
+ {
205
+ "epoch": 19.99,
206
+ "learning_rate": 2.702957565366481e-05,
207
+ "loss": 3.1694,
208
+ "step": 700
209
+ },
210
+ {
211
+ "epoch": 19.99,
212
+ "eval_loss": 3.094352960586548,
213
+ "eval_runtime": 26.9913,
214
+ "eval_samples_per_second": 18.525,
215
+ "eval_wer": 1.0,
216
+ "step": 700
217
+ },
218
+ {
219
+ "epoch": 20.99,
220
+ "eval_loss": 3.057588577270508,
221
+ "eval_runtime": 26.8711,
222
+ "eval_samples_per_second": 18.607,
223
+ "eval_wer": 1.0,
224
+ "step": 735
225
+ },
226
+ {
227
+ "epoch": 21.99,
228
+ "eval_loss": 3.0422518253326416,
229
+ "eval_runtime": 26.285,
230
+ "eval_samples_per_second": 19.022,
231
+ "eval_wer": 1.0,
232
+ "step": 770
233
+ },
234
+ {
235
+ "epoch": 22.85,
236
+ "learning_rate": 2.6386626660951566e-05,
237
+ "loss": 3.1362,
238
+ "step": 800
239
+ },
240
+ {
241
+ "epoch": 22.99,
242
+ "eval_loss": 3.0276663303375244,
243
+ "eval_runtime": 26.5969,
244
+ "eval_samples_per_second": 18.799,
245
+ "eval_wer": 1.0,
246
+ "step": 805
247
+ },
248
+ {
249
+ "epoch": 23.99,
250
+ "eval_loss": 3.0015952587127686,
251
+ "eval_runtime": 26.954,
252
+ "eval_samples_per_second": 18.55,
253
+ "eval_wer": 1.0,
254
+ "step": 840
255
+ },
256
+ {
257
+ "epoch": 24.99,
258
+ "eval_loss": 2.9831387996673584,
259
+ "eval_runtime": 26.3639,
260
+ "eval_samples_per_second": 18.965,
261
+ "eval_wer": 1.0,
262
+ "step": 875
263
+ },
264
+ {
265
+ "epoch": 25.7,
266
+ "learning_rate": 2.574367766823832e-05,
267
+ "loss": 3.0785,
268
+ "step": 900
269
+ },
270
+ {
271
+ "epoch": 25.99,
272
+ "eval_loss": 2.9717295169830322,
273
+ "eval_runtime": 26.345,
274
+ "eval_samples_per_second": 18.979,
275
+ "eval_wer": 1.0,
276
+ "step": 910
277
+ },
278
+ {
279
+ "epoch": 26.99,
280
+ "eval_loss": 2.931703567504883,
281
+ "eval_runtime": 28.5603,
282
+ "eval_samples_per_second": 17.507,
283
+ "eval_wer": 1.0,
284
+ "step": 945
285
+ },
286
+ {
287
+ "epoch": 27.99,
288
+ "eval_loss": 2.907294511795044,
289
+ "eval_runtime": 27.6636,
290
+ "eval_samples_per_second": 18.074,
291
+ "eval_wer": 1.0,
292
+ "step": 980
293
+ },
294
+ {
295
+ "epoch": 28.56,
296
+ "learning_rate": 2.5100728675525077e-05,
297
+ "loss": 3.0127,
298
+ "step": 1000
299
+ },
300
+ {
301
+ "epoch": 28.99,
302
+ "eval_loss": 2.8216962814331055,
303
+ "eval_runtime": 27.1654,
304
+ "eval_samples_per_second": 18.406,
305
+ "eval_wer": 0.9988674971687429,
306
+ "step": 1015
307
+ },
308
+ {
309
+ "epoch": 29.99,
310
+ "eval_loss": 2.7435991764068604,
311
+ "eval_runtime": 27.0704,
312
+ "eval_samples_per_second": 18.47,
313
+ "eval_wer": 0.9941959229898075,
314
+ "step": 1050
315
+ },
316
+ {
317
+ "epoch": 30.99,
318
+ "eval_loss": 2.619396924972534,
319
+ "eval_runtime": 27.0157,
320
+ "eval_samples_per_second": 18.508,
321
+ "eval_wer": 0.9906568516421291,
322
+ "step": 1085
323
+ },
324
+ {
325
+ "epoch": 31.42,
326
+ "learning_rate": 2.4457779682811833e-05,
327
+ "loss": 2.8512,
328
+ "step": 1100
329
+ },
330
+ {
331
+ "epoch": 31.99,
332
+ "eval_loss": 2.5079009532928467,
333
+ "eval_runtime": 27.1587,
334
+ "eval_samples_per_second": 18.41,
335
+ "eval_wer": 0.9924971687429218,
336
+ "step": 1120
337
+ },
338
+ {
339
+ "epoch": 32.99,
340
+ "eval_loss": 2.3371741771698,
341
+ "eval_runtime": 27.7752,
342
+ "eval_samples_per_second": 18.002,
343
+ "eval_wer": 0.9917893544733862,
344
+ "step": 1155
345
+ },
346
+ {
347
+ "epoch": 33.99,
348
+ "eval_loss": 2.1688764095306396,
349
+ "eval_runtime": 27.3286,
350
+ "eval_samples_per_second": 18.296,
351
+ "eval_wer": 0.9882502831257078,
352
+ "step": 1190
353
+ },
354
+ {
355
+ "epoch": 34.28,
356
+ "learning_rate": 2.3814830690098586e-05,
357
+ "loss": 2.5708,
358
+ "step": 1200
359
+ },
360
+ {
361
+ "epoch": 34.99,
362
+ "eval_loss": 1.9715479612350464,
363
+ "eval_runtime": 26.5008,
364
+ "eval_samples_per_second": 18.867,
365
+ "eval_wer": 0.9685730464326161,
366
+ "step": 1225
367
+ },
368
+ {
369
+ "epoch": 35.99,
370
+ "eval_loss": 1.8692930936813354,
371
+ "eval_runtime": 26.8592,
372
+ "eval_samples_per_second": 18.616,
373
+ "eval_wer": 0.9617780294450736,
374
+ "step": 1260
375
+ },
376
+ {
377
+ "epoch": 36.99,
378
+ "eval_loss": 1.7158366441726685,
379
+ "eval_runtime": 26.8153,
380
+ "eval_samples_per_second": 18.646,
381
+ "eval_wer": 0.9658833522083805,
382
+ "step": 1295
383
+ },
384
+ {
385
+ "epoch": 37.14,
386
+ "learning_rate": 2.317188169738534e-05,
387
+ "loss": 2.1632,
388
+ "step": 1300
389
+ },
390
+ {
391
+ "epoch": 37.99,
392
+ "eval_loss": 1.5786515474319458,
393
+ "eval_runtime": 27.1788,
394
+ "eval_samples_per_second": 18.397,
395
+ "eval_wer": 0.943233295583239,
396
+ "step": 1330
397
+ },
398
+ {
399
+ "epoch": 38.99,
400
+ "eval_loss": 1.490448236465454,
401
+ "eval_runtime": 27.5548,
402
+ "eval_samples_per_second": 18.146,
403
+ "eval_wer": 0.9457814269535674,
404
+ "step": 1365
405
+ },
406
+ {
407
+ "epoch": 39.99,
408
+ "learning_rate": 2.2528932704672097e-05,
409
+ "loss": 1.8294,
410
+ "step": 1400
411
+ },
412
+ {
413
+ "epoch": 39.99,
414
+ "eval_loss": 1.4414215087890625,
415
+ "eval_runtime": 27.3752,
416
+ "eval_samples_per_second": 18.265,
417
+ "eval_wer": 0.9232729331823329,
418
+ "step": 1400
419
+ },
420
+ {
421
+ "epoch": 40.99,
422
+ "eval_loss": 1.3827379941940308,
423
+ "eval_runtime": 26.825,
424
+ "eval_samples_per_second": 18.639,
425
+ "eval_wer": 0.9113816534541337,
426
+ "step": 1435
427
+ },
428
+ {
429
+ "epoch": 41.99,
430
+ "eval_loss": 1.3141157627105713,
431
+ "eval_runtime": 26.9732,
432
+ "eval_samples_per_second": 18.537,
433
+ "eval_wer": 0.9089750849377124,
434
+ "step": 1470
435
+ },
436
+ {
437
+ "epoch": 42.85,
438
+ "learning_rate": 2.1885983711958853e-05,
439
+ "loss": 1.593,
440
+ "step": 1500
441
+ },
442
+ {
443
+ "epoch": 42.99,
444
+ "eval_loss": 1.2413103580474854,
445
+ "eval_runtime": 26.9193,
446
+ "eval_samples_per_second": 18.574,
447
+ "eval_wer": 0.8898640996602492,
448
+ "step": 1505
449
+ },
450
+ {
451
+ "epoch": 43.99,
452
+ "eval_loss": 1.2450193166732788,
453
+ "eval_runtime": 27.4051,
454
+ "eval_samples_per_second": 18.245,
455
+ "eval_wer": 0.878114382785957,
456
+ "step": 1540
457
+ },
458
+ {
459
+ "epoch": 44.99,
460
+ "eval_loss": 1.1904444694519043,
461
+ "eval_runtime": 27.0345,
462
+ "eval_samples_per_second": 18.495,
463
+ "eval_wer": 0.862400906002265,
464
+ "step": 1575
465
+ },
466
+ {
467
+ "epoch": 45.7,
468
+ "learning_rate": 2.124303471924561e-05,
469
+ "loss": 1.4381,
470
+ "step": 1600
471
+ },
472
+ {
473
+ "epoch": 45.99,
474
+ "eval_loss": 1.1529375314712524,
475
+ "eval_runtime": 27.9547,
476
+ "eval_samples_per_second": 17.886,
477
+ "eval_wer": 0.8573046432616082,
478
+ "step": 1610
479
+ },
480
+ {
481
+ "epoch": 46.99,
482
+ "eval_loss": 1.0873721837997437,
483
+ "eval_runtime": 27.3563,
484
+ "eval_samples_per_second": 18.277,
485
+ "eval_wer": 0.8425821064552661,
486
+ "step": 1645
487
+ },
488
+ {
489
+ "epoch": 47.99,
490
+ "eval_loss": 1.0788930654525757,
491
+ "eval_runtime": 27.3167,
492
+ "eval_samples_per_second": 18.304,
493
+ "eval_wer": 0.8338052095130238,
494
+ "step": 1680
495
+ },
496
+ {
497
+ "epoch": 48.56,
498
+ "learning_rate": 2.060008572653236e-05,
499
+ "loss": 1.3129,
500
+ "step": 1700
501
+ },
502
+ {
503
+ "epoch": 48.99,
504
+ "eval_loss": 1.0390797853469849,
505
+ "eval_runtime": 27.5562,
506
+ "eval_samples_per_second": 18.145,
507
+ "eval_wer": 0.8220554926387316,
508
+ "step": 1715
509
+ },
510
+ {
511
+ "epoch": 49.99,
512
+ "eval_loss": 0.9944789409637451,
513
+ "eval_runtime": 26.1901,
514
+ "eval_samples_per_second": 19.091,
515
+ "eval_wer": 0.8062004530011325,
516
+ "step": 1750
517
+ },
518
+ {
519
+ "epoch": 50.99,
520
+ "eval_loss": 0.9924176931381226,
521
+ "eval_runtime": 28.2948,
522
+ "eval_samples_per_second": 17.671,
523
+ "eval_wer": 0.8042185730464326,
524
+ "step": 1785
525
+ },
526
+ {
527
+ "epoch": 51.42,
528
+ "learning_rate": 1.9957136733819117e-05,
529
+ "loss": 1.2179,
530
+ "step": 1800
531
+ },
532
+ {
533
+ "epoch": 51.99,
534
+ "eval_loss": 0.9647215604782104,
535
+ "eval_runtime": 27.2768,
536
+ "eval_samples_per_second": 18.331,
537
+ "eval_wer": 0.7977066817667045,
538
+ "step": 1820
539
+ },
540
+ {
541
+ "epoch": 52.99,
542
+ "eval_loss": 0.959790050983429,
543
+ "eval_runtime": 27.5769,
544
+ "eval_samples_per_second": 18.131,
545
+ "eval_wer": 0.7843997734994338,
546
+ "step": 1855
547
+ },
548
+ {
549
+ "epoch": 53.99,
550
+ "eval_loss": 0.9579805135726929,
551
+ "eval_runtime": 26.7511,
552
+ "eval_samples_per_second": 18.691,
553
+ "eval_wer": 0.7768969422423556,
554
+ "step": 1890
555
+ },
556
+ {
557
+ "epoch": 54.28,
558
+ "learning_rate": 1.9314187741105873e-05,
559
+ "loss": 1.138,
560
+ "step": 1900
561
+ },
562
+ {
563
+ "epoch": 54.99,
564
+ "eval_loss": 0.9402398467063904,
565
+ "eval_runtime": 27.2724,
566
+ "eval_samples_per_second": 18.334,
567
+ "eval_wer": 0.7920441676104191,
568
+ "step": 1925
569
+ },
570
+ {
571
+ "epoch": 55.99,
572
+ "eval_loss": 0.8787918090820312,
573
+ "eval_runtime": 27.3961,
574
+ "eval_samples_per_second": 18.251,
575
+ "eval_wer": 0.7559456398640997,
576
+ "step": 1960
577
+ },
578
+ {
579
+ "epoch": 56.99,
580
+ "eval_loss": 0.8727829456329346,
581
+ "eval_runtime": 27.2979,
582
+ "eval_samples_per_second": 18.316,
583
+ "eval_wer": 0.7539637599093998,
584
+ "step": 1995
585
+ },
586
+ {
587
+ "epoch": 57.14,
588
+ "learning_rate": 1.867123874839263e-05,
589
+ "loss": 1.0772,
590
+ "step": 2000
591
+ },
592
+ {
593
+ "epoch": 57.99,
594
+ "eval_loss": 0.8611069321632385,
595
+ "eval_runtime": 28.307,
596
+ "eval_samples_per_second": 17.663,
597
+ "eval_wer": 0.7456115515288788,
598
+ "step": 2030
599
+ },
600
+ {
601
+ "epoch": 58.99,
602
+ "eval_loss": 0.8685981631278992,
603
+ "eval_runtime": 26.4664,
604
+ "eval_samples_per_second": 18.892,
605
+ "eval_wer": 0.7393827859569649,
606
+ "step": 2065
607
+ },
608
+ {
609
+ "epoch": 59.99,
610
+ "learning_rate": 1.8028289755679385e-05,
611
+ "loss": 1.0328,
612
+ "step": 2100
613
+ },
614
+ {
615
+ "epoch": 59.99,
616
+ "eval_loss": 0.8199361562728882,
617
+ "eval_runtime": 26.9722,
618
+ "eval_samples_per_second": 18.538,
619
+ "eval_wer": 0.7260758776896942,
620
+ "step": 2100
621
+ },
622
+ {
623
+ "epoch": 60.99,
624
+ "eval_loss": 0.8023450374603271,
625
+ "eval_runtime": 27.0456,
626
+ "eval_samples_per_second": 18.487,
627
+ "eval_wer": 0.7250849377123443,
628
+ "step": 2135
629
+ },
630
+ {
631
+ "epoch": 61.99,
632
+ "eval_loss": 0.8279299139976501,
633
+ "eval_runtime": 27.3268,
634
+ "eval_samples_per_second": 18.297,
635
+ "eval_wer": 0.7280577576443941,
636
+ "step": 2170
637
+ },
638
+ {
639
+ "epoch": 62.85,
640
+ "learning_rate": 1.7385340762966137e-05,
641
+ "loss": 0.9874,
642
+ "step": 2200
643
+ },
644
+ {
645
+ "epoch": 62.99,
646
+ "eval_loss": 0.8266852498054504,
647
+ "eval_runtime": 26.5957,
648
+ "eval_samples_per_second": 18.8,
649
+ "eval_wer": 0.7056908267270668,
650
+ "step": 2205
651
+ },
652
+ {
653
+ "epoch": 63.99,
654
+ "eval_loss": 0.7818687558174133,
655
+ "eval_runtime": 27.0982,
656
+ "eval_samples_per_second": 18.451,
657
+ "eval_wer": 0.7042751981879954,
658
+ "step": 2240
659
+ },
660
+ {
661
+ "epoch": 64.99,
662
+ "eval_loss": 0.8026483058929443,
663
+ "eval_runtime": 27.0042,
664
+ "eval_samples_per_second": 18.516,
665
+ "eval_wer": 0.7004530011325029,
666
+ "step": 2275
667
+ },
668
+ {
669
+ "epoch": 65.7,
670
+ "learning_rate": 1.6742391770252893e-05,
671
+ "loss": 0.949,
672
+ "step": 2300
673
+ },
674
+ {
675
+ "epoch": 65.99,
676
+ "eval_loss": 0.8021445274353027,
677
+ "eval_runtime": 27.2917,
678
+ "eval_samples_per_second": 18.321,
679
+ "eval_wer": 0.6971970554926388,
680
+ "step": 2310
681
+ },
682
+ {
683
+ "epoch": 66.99,
684
+ "eval_loss": 0.7785004377365112,
685
+ "eval_runtime": 28.0805,
686
+ "eval_samples_per_second": 17.806,
687
+ "eval_wer": 0.6956398640996603,
688
+ "step": 2345
689
+ },
690
+ {
691
+ "epoch": 67.99,
692
+ "eval_loss": 0.7500312328338623,
693
+ "eval_runtime": 26.9245,
694
+ "eval_samples_per_second": 18.57,
695
+ "eval_wer": 0.6820498301245753,
696
+ "step": 2380
697
+ },
698
+ {
699
+ "epoch": 68.56,
700
+ "learning_rate": 1.609944277753965e-05,
701
+ "loss": 0.9119,
702
+ "step": 2400
703
+ },
704
+ {
705
+ "epoch": 68.99,
706
+ "eval_loss": 0.701343834400177,
707
+ "eval_runtime": 26.782,
708
+ "eval_samples_per_second": 18.669,
709
+ "eval_wer": 0.6768120045300113,
710
+ "step": 2415
711
+ },
712
+ {
713
+ "epoch": 69.99,
714
+ "eval_loss": 0.7393462061882019,
715
+ "eval_runtime": 27.5438,
716
+ "eval_samples_per_second": 18.153,
717
+ "eval_wer": 0.6719988674971688,
718
+ "step": 2450
719
+ },
720
+ {
721
+ "epoch": 70.99,
722
+ "eval_loss": 0.7068197131156921,
723
+ "eval_runtime": 27.1804,
724
+ "eval_samples_per_second": 18.396,
725
+ "eval_wer": 0.6626557191392979,
726
+ "step": 2485
727
+ },
728
+ {
729
+ "epoch": 71.42,
730
+ "learning_rate": 1.5456493784826405e-05,
731
+ "loss": 0.876,
732
+ "step": 2500
733
+ },
734
+ {
735
+ "epoch": 71.99,
736
+ "eval_loss": 0.7229353189468384,
737
+ "eval_runtime": 25.5356,
738
+ "eval_samples_per_second": 19.581,
739
+ "eval_wer": 0.6599660249150623,
740
+ "step": 2520
741
+ },
742
+ {
743
+ "epoch": 72.99,
744
+ "eval_loss": 0.7125120759010315,
745
+ "eval_runtime": 26.7798,
746
+ "eval_samples_per_second": 18.671,
747
+ "eval_wer": 0.6550113250283126,
748
+ "step": 2555
749
+ },
750
+ {
751
+ "epoch": 73.99,
752
+ "eval_loss": 0.6882209181785583,
753
+ "eval_runtime": 27.3156,
754
+ "eval_samples_per_second": 18.305,
755
+ "eval_wer": 0.6520385050962627,
756
+ "step": 2590
757
+ },
758
+ {
759
+ "epoch": 74.28,
760
+ "learning_rate": 1.4813544792113159e-05,
761
+ "loss": 0.8639,
762
+ "step": 2600
763
+ },
764
+ {
765
+ "epoch": 74.99,
766
+ "eval_loss": 0.6938254237174988,
767
+ "eval_runtime": 27.0308,
768
+ "eval_samples_per_second": 18.497,
769
+ "eval_wer": 0.6394394110985278,
770
+ "step": 2625
771
+ },
772
+ {
773
+ "epoch": 75.99,
774
+ "eval_loss": 0.7523351311683655,
775
+ "eval_runtime": 26.9197,
776
+ "eval_samples_per_second": 18.574,
777
+ "eval_wer": 0.6540203850509626,
778
+ "step": 2660
779
+ },
780
+ {
781
+ "epoch": 76.99,
782
+ "eval_loss": 0.6973133683204651,
783
+ "eval_runtime": 27.134,
784
+ "eval_samples_per_second": 18.427,
785
+ "eval_wer": 0.6507644394110985,
786
+ "step": 2695
787
+ },
788
+ {
789
+ "epoch": 77.14,
790
+ "learning_rate": 1.4170595799399915e-05,
791
+ "loss": 0.8319,
792
+ "step": 2700
793
+ },
794
+ {
795
+ "epoch": 77.99,
796
+ "eval_loss": 0.6753961443901062,
797
+ "eval_runtime": 27.0856,
798
+ "eval_samples_per_second": 18.46,
799
+ "eval_wer": 0.621885617214043,
800
+ "step": 2730
801
+ },
802
+ {
803
+ "epoch": 78.99,
804
+ "eval_loss": 0.6487002372741699,
805
+ "eval_runtime": 27.3912,
806
+ "eval_samples_per_second": 18.254,
807
+ "eval_wer": 0.6213193657984145,
808
+ "step": 2765
809
+ },
810
+ {
811
+ "epoch": 79.99,
812
+ "learning_rate": 1.352764680668667e-05,
813
+ "loss": 0.8096,
814
+ "step": 2800
815
+ },
816
+ {
817
+ "epoch": 79.99,
818
+ "eval_loss": 0.6611467003822327,
819
+ "eval_runtime": 27.457,
820
+ "eval_samples_per_second": 18.21,
821
+ "eval_wer": 0.6288221970554927,
822
+ "step": 2800
823
+ },
824
+ {
825
+ "epoch": 80.99,
826
+ "eval_loss": 0.667143702507019,
827
+ "eval_runtime": 27.4086,
828
+ "eval_samples_per_second": 18.242,
829
+ "eval_wer": 0.6104190260475651,
830
+ "step": 2835
831
+ },
832
+ {
833
+ "epoch": 81.99,
834
+ "eval_loss": 0.6765517592430115,
835
+ "eval_runtime": 26.975,
836
+ "eval_samples_per_second": 18.536,
837
+ "eval_wer": 0.616647791619479,
838
+ "step": 2870
839
+ },
840
+ {
841
+ "epoch": 82.85,
842
+ "learning_rate": 1.2884697813973425e-05,
843
+ "loss": 0.7862,
844
+ "step": 2900
845
+ },
846
+ {
847
+ "epoch": 82.99,
848
+ "eval_loss": 0.6575422286987305,
849
+ "eval_runtime": 26.7138,
850
+ "eval_samples_per_second": 18.717,
851
+ "eval_wer": 0.6099943374858438,
852
+ "step": 2905
853
+ },
854
+ {
855
+ "epoch": 83.99,
856
+ "eval_loss": 0.6632807850837708,
857
+ "eval_runtime": 26.7198,
858
+ "eval_samples_per_second": 18.713,
859
+ "eval_wer": 0.6109852774631936,
860
+ "step": 2940
861
+ },
862
+ {
863
+ "epoch": 84.99,
864
+ "eval_loss": 0.6666624546051025,
865
+ "eval_runtime": 27.1802,
866
+ "eval_samples_per_second": 18.396,
867
+ "eval_wer": 0.616647791619479,
868
+ "step": 2975
869
+ },
870
+ {
871
+ "epoch": 85.7,
872
+ "learning_rate": 1.224174882126018e-05,
873
+ "loss": 0.7795,
874
+ "step": 3000
875
+ },
876
+ {
877
+ "epoch": 85.99,
878
+ "eval_loss": 0.6229019165039062,
879
+ "eval_runtime": 27.3639,
880
+ "eval_samples_per_second": 18.272,
881
+ "eval_wer": 0.5975368063420159,
882
+ "step": 3010
883
+ },
884
+ {
885
+ "epoch": 86.99,
886
+ "eval_loss": 0.6241843104362488,
887
+ "eval_runtime": 27.6099,
888
+ "eval_samples_per_second": 18.109,
889
+ "eval_wer": 0.5881936579841449,
890
+ "step": 3045
891
+ },
892
+ {
893
+ "epoch": 87.99,
894
+ "eval_loss": 0.6389002799987793,
895
+ "eval_runtime": 27.1816,
896
+ "eval_samples_per_second": 18.395,
897
+ "eval_wer": 0.5962627406568517,
898
+ "step": 3080
899
+ },
900
+ {
901
+ "epoch": 88.56,
902
+ "learning_rate": 1.1598799828546935e-05,
903
+ "loss": 0.76,
904
+ "step": 3100
905
+ },
906
+ {
907
+ "epoch": 88.99,
908
+ "eval_loss": 0.6407724618911743,
909
+ "eval_runtime": 27.9119,
910
+ "eval_samples_per_second": 17.914,
911
+ "eval_wer": 0.5982446206115515,
912
+ "step": 3115
913
+ },
914
+ {
915
+ "epoch": 89.99,
916
+ "eval_loss": 0.6397743821144104,
917
+ "eval_runtime": 26.1239,
918
+ "eval_samples_per_second": 19.14,
919
+ "eval_wer": 0.5846545866364666,
920
+ "step": 3150
921
+ },
922
+ {
923
+ "epoch": 90.99,
924
+ "eval_loss": 0.6100246906280518,
925
+ "eval_runtime": 26.8354,
926
+ "eval_samples_per_second": 18.632,
927
+ "eval_wer": 0.5849377123442808,
928
+ "step": 3185
929
+ },
930
+ {
931
+ "epoch": 91.42,
932
+ "learning_rate": 1.095585083583369e-05,
933
+ "loss": 0.74,
934
+ "step": 3200
935
+ },
936
+ {
937
+ "epoch": 91.99,
938
+ "eval_loss": 0.6202873587608337,
939
+ "eval_runtime": 27.7182,
940
+ "eval_samples_per_second": 18.039,
941
+ "eval_wer": 0.5818233295583239,
942
+ "step": 3220
943
+ },
944
+ {
945
+ "epoch": 92.99,
946
+ "eval_loss": 0.609228253364563,
947
+ "eval_runtime": 27.272,
948
+ "eval_samples_per_second": 18.334,
949
+ "eval_wer": 0.5784258210645526,
950
+ "step": 3255
951
+ },
952
+ {
953
+ "epoch": 93.99,
954
+ "eval_loss": 0.6129232048988342,
955
+ "eval_runtime": 27.5404,
956
+ "eval_samples_per_second": 18.155,
957
+ "eval_wer": 0.57559456398641,
958
+ "step": 3290
959
+ },
960
+ {
961
+ "epoch": 94.28,
962
+ "learning_rate": 1.0312901843120446e-05,
963
+ "loss": 0.7256,
964
+ "step": 3300
965
+ },
966
+ {
967
+ "epoch": 94.99,
968
+ "eval_loss": 0.6256955862045288,
969
+ "eval_runtime": 26.854,
970
+ "eval_samples_per_second": 18.619,
971
+ "eval_wer": 0.5791336353340883,
972
+ "step": 3325
973
+ },
974
+ {
975
+ "epoch": 95.99,
976
+ "eval_loss": 0.623586893081665,
977
+ "eval_runtime": 26.9076,
978
+ "eval_samples_per_second": 18.582,
979
+ "eval_wer": 0.5741789354473387,
980
+ "step": 3360
981
+ },
982
+ {
983
+ "epoch": 96.99,
984
+ "eval_loss": 0.6311513781547546,
985
+ "eval_runtime": 26.8392,
986
+ "eval_samples_per_second": 18.629,
987
+ "eval_wer": 0.5716308040770102,
988
+ "step": 3395
989
+ },
990
+ {
991
+ "epoch": 97.14,
992
+ "learning_rate": 9.6699528504072e-06,
993
+ "loss": 0.7228,
994
+ "step": 3400
995
+ },
996
+ {
997
+ "epoch": 97.99,
998
+ "eval_loss": 0.6243217587471008,
999
+ "eval_runtime": 26.966,
1000
+ "eval_samples_per_second": 18.542,
1001
+ "eval_wer": 0.584088335220838,
1002
+ "step": 3430
1003
+ },
1004
+ {
1005
+ "epoch": 98.99,
1006
+ "eval_loss": 0.6131792664527893,
1007
+ "eval_runtime": 26.9072,
1008
+ "eval_samples_per_second": 18.582,
1009
+ "eval_wer": 0.5697904869762175,
1010
+ "step": 3465
1011
+ },
1012
+ {
1013
+ "epoch": 99.99,
1014
+ "learning_rate": 9.027003857693956e-06,
1015
+ "loss": 0.7052,
1016
+ "step": 3500
1017
+ },
1018
+ {
1019
+ "epoch": 99.99,
1020
+ "eval_loss": 0.6121107339859009,
1021
+ "eval_runtime": 27.0528,
1022
+ "eval_samples_per_second": 18.482,
1023
+ "eval_wer": 0.5740373725934315,
1024
+ "step": 3500
1025
+ },
1026
+ {
1027
+ "epoch": 100.99,
1028
+ "eval_loss": 0.5875396728515625,
1029
+ "eval_runtime": 26.9794,
1030
+ "eval_samples_per_second": 18.533,
1031
+ "eval_wer": 0.5571913929784824,
1032
+ "step": 3535
1033
+ },
1034
+ {
1035
+ "epoch": 101.99,
1036
+ "eval_loss": 0.6091192364692688,
1037
+ "eval_runtime": 27.0699,
1038
+ "eval_samples_per_second": 18.471,
1039
+ "eval_wer": 0.5780011325028312,
1040
+ "step": 3570
1041
+ },
1042
+ {
1043
+ "epoch": 102.85,
1044
+ "learning_rate": 8.384054864980712e-06,
1045
+ "loss": 0.7004,
1046
+ "step": 3600
1047
+ },
1048
+ {
1049
+ "epoch": 102.99,
1050
+ "eval_loss": 0.5911608934402466,
1051
+ "eval_runtime": 26.9942,
1052
+ "eval_samples_per_second": 18.523,
1053
+ "eval_wer": 0.5560588901472253,
1054
+ "step": 3605
1055
+ },
1056
+ {
1057
+ "epoch": 103.99,
1058
+ "eval_loss": 0.6172874569892883,
1059
+ "eval_runtime": 27.4328,
1060
+ "eval_samples_per_second": 18.226,
1061
+ "eval_wer": 0.5686579841449604,
1062
+ "step": 3640
1063
+ },
1064
+ {
1065
+ "epoch": 104.99,
1066
+ "eval_loss": 0.5960651636123657,
1067
+ "eval_runtime": 25.9346,
1068
+ "eval_samples_per_second": 19.279,
1069
+ "eval_wer": 0.5518120045300113,
1070
+ "step": 3675
1071
+ },
1072
+ {
1073
+ "epoch": 105.7,
1074
+ "learning_rate": 7.741105872267466e-06,
1075
+ "loss": 0.6821,
1076
+ "step": 3700
1077
+ },
1078
+ {
1079
+ "epoch": 105.99,
1080
+ "eval_loss": 0.6121740937232971,
1081
+ "eval_runtime": 26.1378,
1082
+ "eval_samples_per_second": 19.129,
1083
+ "eval_wer": 0.5595979614949037,
1084
+ "step": 3710
1085
+ },
1086
+ {
1087
+ "epoch": 106.99,
1088
+ "eval_loss": 0.5817015171051025,
1089
+ "eval_runtime": 26.989,
1090
+ "eval_samples_per_second": 18.526,
1091
+ "eval_wer": 0.5535107587768969,
1092
+ "step": 3745
1093
+ },
1094
+ {
1095
+ "epoch": 107.99,
1096
+ "eval_loss": 0.579744279384613,
1097
+ "eval_runtime": 26.8303,
1098
+ "eval_samples_per_second": 18.636,
1099
+ "eval_wer": 0.5373725934314836,
1100
+ "step": 3780
1101
+ },
1102
+ {
1103
+ "epoch": 108.56,
1104
+ "learning_rate": 7.098156879554223e-06,
1105
+ "loss": 0.6829,
1106
+ "step": 3800
1107
+ },
1108
+ {
1109
+ "epoch": 108.99,
1110
+ "eval_loss": 0.6141317486763,
1111
+ "eval_runtime": 26.7877,
1112
+ "eval_samples_per_second": 18.665,
1113
+ "eval_wer": 0.5554926387315968,
1114
+ "step": 3815
1115
+ },
1116
+ {
1117
+ "epoch": 109.99,
1118
+ "eval_loss": 0.5983940362930298,
1119
+ "eval_runtime": 26.6721,
1120
+ "eval_samples_per_second": 18.746,
1121
+ "eval_wer": 0.5532276330690826,
1122
+ "step": 3850
1123
+ },
1124
+ {
1125
+ "epoch": 110.99,
1126
+ "eval_loss": 0.5953497290611267,
1127
+ "eval_runtime": 27.2912,
1128
+ "eval_samples_per_second": 18.321,
1129
+ "eval_wer": 0.5607304643261608,
1130
+ "step": 3885
1131
+ },
1132
+ {
1133
+ "epoch": 111.42,
1134
+ "learning_rate": 6.455207886840978e-06,
1135
+ "loss": 0.6706,
1136
+ "step": 3900
1137
+ },
1138
+ {
1139
+ "epoch": 111.99,
1140
+ "eval_loss": 0.5864156484603882,
1141
+ "eval_runtime": 27.4851,
1142
+ "eval_samples_per_second": 18.192,
1143
+ "eval_wer": 0.5526613816534541,
1144
+ "step": 3920
1145
+ },
1146
+ {
1147
+ "epoch": 112.99,
1148
+ "eval_loss": 0.589518666267395,
1149
+ "eval_runtime": 26.5061,
1150
+ "eval_samples_per_second": 18.864,
1151
+ "eval_wer": 0.5244903737259343,
1152
+ "step": 3955
1153
+ },
1154
+ {
1155
+ "epoch": 113.99,
1156
+ "eval_loss": 0.6098873615264893,
1157
+ "eval_runtime": 26.9359,
1158
+ "eval_samples_per_second": 18.563,
1159
+ "eval_wer": 0.5562004530011325,
1160
+ "step": 3990
1161
+ },
1162
+ {
1163
+ "epoch": 114.28,
1164
+ "learning_rate": 5.812258894127733e-06,
1165
+ "loss": 0.6676,
1166
+ "step": 4000
1167
+ },
1168
+ {
1169
+ "epoch": 114.99,
1170
+ "eval_loss": 0.593589186668396,
1171
+ "eval_runtime": 27.4328,
1172
+ "eval_samples_per_second": 18.226,
1173
+ "eval_wer": 0.5383635334088335,
1174
+ "step": 4025
1175
+ },
1176
+ {
1177
+ "epoch": 115.99,
1178
+ "eval_loss": 0.5409448146820068,
1179
+ "eval_runtime": 26.749,
1180
+ "eval_samples_per_second": 18.692,
1181
+ "eval_wer": 0.5396375990939978,
1182
+ "step": 4060
1183
+ },
1184
+ {
1185
+ "epoch": 116.99,
1186
+ "eval_loss": 0.6060774922370911,
1187
+ "eval_runtime": 27.4597,
1188
+ "eval_samples_per_second": 18.208,
1189
+ "eval_wer": 0.5600226500566251,
1190
+ "step": 4095
1191
+ },
1192
+ {
1193
+ "epoch": 117.14,
1194
+ "learning_rate": 5.169309901414488e-06,
1195
+ "loss": 0.6627,
1196
+ "step": 4100
1197
+ },
1198
+ {
1199
+ "epoch": 117.99,
1200
+ "eval_loss": 0.5925233364105225,
1201
+ "eval_runtime": 27.1637,
1202
+ "eval_samples_per_second": 18.407,
1203
+ "eval_wer": 0.5481313703284258,
1204
+ "step": 4130
1205
+ },
1206
+ {
1207
+ "epoch": 118.99,
1208
+ "eval_loss": 0.5753343105316162,
1209
+ "eval_runtime": 26.9095,
1210
+ "eval_samples_per_second": 18.581,
1211
+ "eval_wer": 0.5465741789354474,
1212
+ "step": 4165
1213
+ },
1214
+ {
1215
+ "epoch": 119.99,
1216
+ "learning_rate": 4.526360908701243e-06,
1217
+ "loss": 0.6513,
1218
+ "step": 4200
1219
+ },
1220
+ {
1221
+ "epoch": 119.99,
1222
+ "eval_loss": 0.5831518769264221,
1223
+ "eval_runtime": 27.2243,
1224
+ "eval_samples_per_second": 18.366,
1225
+ "eval_wer": 0.5393544733861835,
1226
+ "step": 4200
1227
+ },
1228
+ {
1229
+ "epoch": 120.99,
1230
+ "eval_loss": 0.6026310920715332,
1231
+ "eval_runtime": 27.2645,
1232
+ "eval_samples_per_second": 18.339,
1233
+ "eval_wer": 0.5423272933182333,
1234
+ "step": 4235
1235
+ },
1236
+ {
1237
+ "epoch": 121.99,
1238
+ "eval_loss": 0.6404977440834045,
1239
+ "eval_runtime": 28.1762,
1240
+ "eval_samples_per_second": 17.745,
1241
+ "eval_wer": 0.5603057757644394,
1242
+ "step": 4270
1243
+ },
1244
+ {
1245
+ "epoch": 122.85,
1246
+ "learning_rate": 3.883411915987999e-06,
1247
+ "loss": 0.6537,
1248
+ "step": 4300
1249
+ },
1250
+ {
1251
+ "epoch": 122.99,
1252
+ "eval_loss": 0.5665517449378967,
1253
+ "eval_runtime": 27.5119,
1254
+ "eval_samples_per_second": 18.174,
1255
+ "eval_wer": 0.527321630804077,
1256
+ "step": 4305
1257
+ },
1258
+ {
1259
+ "epoch": 123.99,
1260
+ "eval_loss": 0.5304960012435913,
1261
+ "eval_runtime": 27.367,
1262
+ "eval_samples_per_second": 18.27,
1263
+ "eval_wer": 0.5196772366930917,
1264
+ "step": 4340
1265
+ },
1266
+ {
1267
+ "epoch": 124.99,
1268
+ "eval_loss": 0.6143291592597961,
1269
+ "eval_runtime": 27.7739,
1270
+ "eval_samples_per_second": 18.002,
1271
+ "eval_wer": 0.5349660249150623,
1272
+ "step": 4375
1273
+ },
1274
+ {
1275
+ "epoch": 125.7,
1276
+ "learning_rate": 3.2404629232747538e-06,
1277
+ "loss": 0.6465,
1278
+ "step": 4400
1279
+ },
1280
+ {
1281
+ "epoch": 125.99,
1282
+ "eval_loss": 0.5990394353866577,
1283
+ "eval_runtime": 27.6536,
1284
+ "eval_samples_per_second": 18.081,
1285
+ "eval_wer": 0.5335503963759909,
1286
+ "step": 4410
1287
+ },
1288
+ {
1289
+ "epoch": 126.99,
1290
+ "eval_loss": 0.5602393746376038,
1291
+ "eval_runtime": 26.8983,
1292
+ "eval_samples_per_second": 18.589,
1293
+ "eval_wer": 0.5257644394110985,
1294
+ "step": 4445
1295
+ },
1296
+ {
1297
+ "epoch": 127.99,
1298
+ "eval_loss": 0.6085386276245117,
1299
+ "eval_runtime": 27.9177,
1300
+ "eval_samples_per_second": 17.91,
1301
+ "eval_wer": 0.5562004530011325,
1302
+ "step": 4480
1303
+ },
1304
+ {
1305
+ "epoch": 128.56,
1306
+ "learning_rate": 2.5975139305615088e-06,
1307
+ "loss": 0.6407,
1308
+ "step": 4500
1309
+ },
1310
+ {
1311
+ "epoch": 128.99,
1312
+ "eval_loss": 0.613398551940918,
1313
+ "eval_runtime": 27.1482,
1314
+ "eval_samples_per_second": 18.417,
1315
+ "eval_wer": 0.530436013590034,
1316
+ "step": 4515
1317
+ },
1318
+ {
1319
+ "epoch": 129.99,
1320
+ "eval_loss": 0.5771151185035706,
1321
+ "eval_runtime": 26.8929,
1322
+ "eval_samples_per_second": 18.592,
1323
+ "eval_wer": 0.5293035107587769,
1324
+ "step": 4550
1325
+ },
1326
+ {
1327
+ "epoch": 130.99,
1328
+ "eval_loss": 0.5841774940490723,
1329
+ "eval_runtime": 26.9872,
1330
+ "eval_samples_per_second": 18.527,
1331
+ "eval_wer": 0.5310022650056625,
1332
+ "step": 4585
1333
+ },
1334
+ {
1335
+ "epoch": 131.42,
1336
+ "learning_rate": 1.954564937848264e-06,
1337
+ "loss": 0.6354,
1338
+ "step": 4600
1339
+ },
1340
+ {
1341
+ "epoch": 131.99,
1342
+ "eval_loss": 0.6040024161338806,
1343
+ "eval_runtime": 27.4951,
1344
+ "eval_samples_per_second": 18.185,
1345
+ "eval_wer": 0.5479898074745186,
1346
+ "step": 4620
1347
+ },
1348
+ {
1349
+ "epoch": 132.99,
1350
+ "eval_loss": 0.5754969716072083,
1351
+ "eval_runtime": 27.655,
1352
+ "eval_samples_per_second": 18.08,
1353
+ "eval_wer": 0.5185447338618346,
1354
+ "step": 4655
1355
+ },
1356
+ {
1357
+ "epoch": 133.99,
1358
+ "eval_loss": 0.5896986126899719,
1359
+ "eval_runtime": 25.767,
1360
+ "eval_samples_per_second": 19.405,
1361
+ "eval_wer": 0.5288788221970555,
1362
+ "step": 4690
1363
+ },
1364
+ {
1365
+ "epoch": 133.99,
1366
+ "step": 4690,
1367
+ "total_flos": 0,
1368
+ "train_runtime": 115622.8375,
1369
+ "train_samples_per_second": 0.042
1370
+ }
1371
+ ],
1372
+ "max_steps": 4900,
1373
+ "num_train_epochs": 140,
1374
+ "total_flos": 0,
1375
+ "trial_name": null,
1376
+ "trial_params": null
1377
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5776e8549de6ea4bd7b48698a6b7e41ea19e156c560c75f26a23cc31407aa50d
3
+ size 2607
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "-": 5, "ё": 6, "а": 7, "б": 8, "в": 9, "г": 10, "д": 11, "е": 12, "ж": 13, "з": 14, "и": 15, "й": 16, "к": 17, "л": 18, "м": 19, "н": 20, "о": 21, "п": 22, "р": 23, "с": 24, "т": 25, "у": 26, "ф": 27, "х": 28, "ц": 29, "ч": 30, "ш": 31, "щ": 32, "ъ": 33, "ы": 34, "ь": 35, "э": 36, "ю": 37, "я": 38}