EdBergJr commited on
Commit
680cfd1
·
verified ·
1 Parent(s): 0def14d

End of training

Browse files
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: layoutlm-funsd
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlm-funsd
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6656
20
+ - Answer: {'precision': 0.7408637873754153, 'recall': 0.826946847960445, 'f1': 0.7815420560747665, 'number': 809}
21
+ - Header: {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119}
22
+ - Question: {'precision': 0.7724077328646749, 'recall': 0.8253521126760563, 'f1': 0.7980027235587837, 'number': 1065}
23
+ - Overall Precision: 0.7315
24
+ - Overall Recall: 0.7958
25
+ - Overall F1: 0.7623
26
+ - Overall Accuracy: 0.8127
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.8138 | 1.0 | 10 | 1.6087 | {'precision': 0.03215434083601286, 'recall': 0.037082818294190356, 'f1': 0.03444316877152698, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20825335892514396, 'recall': 0.20375586854460093, 'f1': 0.2059800664451827, 'number': 1065} | 0.1251 | 0.1239 | 0.1245 | 0.3836 |
59
+ | 1.4355 | 2.0 | 20 | 1.2532 | {'precision': 0.22752043596730245, 'recall': 0.20642768850432633, 'f1': 0.21646143875567075, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4494296577946768, 'recall': 0.5549295774647888, 'f1': 0.49663865546218483, 'number': 1065} | 0.3699 | 0.3803 | 0.3751 | 0.5848 |
60
+ | 1.106 | 3.0 | 30 | 0.9895 | {'precision': 0.49122807017543857, 'recall': 0.553770086526576, 'f1': 0.5206275421266705, 'number': 809} | {'precision': 0.038461538461538464, 'recall': 0.008403361344537815, 'f1': 0.013793103448275862, 'number': 119} | {'precision': 0.57109375, 'recall': 0.6863849765258216, 'f1': 0.623454157782516, 'number': 1065} | 0.5320 | 0.5921 | 0.5604 | 0.6946 |
61
+ | 0.8611 | 4.0 | 40 | 0.8055 | {'precision': 0.6096807415036045, 'recall': 0.7317676143386898, 'f1': 0.6651685393258427, 'number': 809} | {'precision': 0.19148936170212766, 'recall': 0.07563025210084033, 'f1': 0.10843373493975902, 'number': 119} | {'precision': 0.663527397260274, 'recall': 0.7276995305164319, 'f1': 0.6941334527541425, 'number': 1065} | 0.6295 | 0.6904 | 0.6585 | 0.7575 |
62
+ | 0.684 | 5.0 | 50 | 0.7200 | {'precision': 0.6620021528525296, 'recall': 0.7601977750309024, 'f1': 0.70771001150748, 'number': 809} | {'precision': 0.23529411764705882, 'recall': 0.16806722689075632, 'f1': 0.19607843137254902, 'number': 119} | {'precision': 0.6933010492332526, 'recall': 0.8065727699530516, 'f1': 0.7456597222222223, 'number': 1065} | 0.6631 | 0.7496 | 0.7037 | 0.7868 |
63
+ | 0.5693 | 6.0 | 60 | 0.6933 | {'precision': 0.6771488469601677, 'recall': 0.7985166872682324, 'f1': 0.7328417470221215, 'number': 809} | {'precision': 0.20202020202020202, 'recall': 0.16806722689075632, 'f1': 0.1834862385321101, 'number': 119} | {'precision': 0.7029787234042553, 'recall': 0.7755868544600939, 'f1': 0.7375, 'number': 1065} | 0.6697 | 0.7486 | 0.7069 | 0.7882 |
64
+ | 0.4931 | 7.0 | 70 | 0.6542 | {'precision': 0.6927138331573389, 'recall': 0.8108776266996292, 'f1': 0.7471526195899771, 'number': 809} | {'precision': 0.2689075630252101, 'recall': 0.2689075630252101, 'f1': 0.2689075630252101, 'number': 119} | {'precision': 0.729043183742591, 'recall': 0.8084507042253521, 'f1': 0.7666963490650045, 'number': 1065} | 0.6894 | 0.7772 | 0.7307 | 0.8042 |
65
+ | 0.4267 | 8.0 | 80 | 0.6503 | {'precision': 0.7034700315457413, 'recall': 0.826946847960445, 'f1': 0.7602272727272728, 'number': 809} | {'precision': 0.275, 'recall': 0.2773109243697479, 'f1': 0.27615062761506276, 'number': 119} | {'precision': 0.7510656436487638, 'recall': 0.8272300469483568, 'f1': 0.7873100983020554, 'number': 1065} | 0.7054 | 0.7943 | 0.7472 | 0.8070 |
66
+ | 0.3872 | 9.0 | 90 | 0.6552 | {'precision': 0.7311111111111112, 'recall': 0.8133498145859085, 'f1': 0.770040959625512, 'number': 809} | {'precision': 0.29906542056074764, 'recall': 0.2689075630252101, 'f1': 0.28318584070796454, 'number': 119} | {'precision': 0.7558239861949957, 'recall': 0.8225352112676056, 'f1': 0.787769784172662, 'number': 1065} | 0.7230 | 0.7858 | 0.7531 | 0.8113 |
67
+ | 0.3651 | 10.0 | 100 | 0.6531 | {'precision': 0.7281659388646288, 'recall': 0.8244746600741656, 'f1': 0.7733333333333332, 'number': 809} | {'precision': 0.29838709677419356, 'recall': 0.31092436974789917, 'f1': 0.3045267489711935, 'number': 119} | {'precision': 0.756872852233677, 'recall': 0.8272300469483568, 'f1': 0.7904890085240016, 'number': 1065} | 0.7191 | 0.7953 | 0.7553 | 0.8144 |
68
+ | 0.3186 | 11.0 | 110 | 0.6525 | {'precision': 0.7268770402611534, 'recall': 0.8257107540173053, 'f1': 0.773148148148148, 'number': 809} | {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119} | {'precision': 0.7627705627705628, 'recall': 0.8272300469483568, 'f1': 0.7936936936936936, 'number': 1065} | 0.7221 | 0.7968 | 0.7576 | 0.8131 |
69
+ | 0.303 | 12.0 | 120 | 0.6564 | {'precision': 0.7306843267108167, 'recall': 0.8182941903584673, 'f1': 0.7720116618075801, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.31932773109243695, 'f1': 0.3261802575107296, 'number': 119} | {'precision': 0.7755102040816326, 'recall': 0.8206572769953052, 'f1': 0.7974452554744526, 'number': 1065} | 0.7331 | 0.7898 | 0.7604 | 0.8127 |
70
+ | 0.2847 | 13.0 | 130 | 0.6678 | {'precision': 0.7435320584926884, 'recall': 0.8170580964153276, 'f1': 0.7785630153121318, 'number': 809} | {'precision': 0.29545454545454547, 'recall': 0.3277310924369748, 'f1': 0.3107569721115538, 'number': 119} | {'precision': 0.7697022767075307, 'recall': 0.8253521126760563, 'f1': 0.7965564114182148, 'number': 1065} | 0.7300 | 0.7923 | 0.7599 | 0.8106 |
71
+ | 0.2689 | 14.0 | 140 | 0.6648 | {'precision': 0.7398015435501654, 'recall': 0.8294190358467244, 'f1': 0.782051282051282, 'number': 809} | {'precision': 0.3046875, 'recall': 0.3277310924369748, 'f1': 0.31578947368421056, 'number': 119} | {'precision': 0.7748460861917327, 'recall': 0.8272300469483568, 'f1': 0.8001816530426885, 'number': 1065} | 0.7325 | 0.7983 | 0.7640 | 0.8123 |
72
+ | 0.2642 | 15.0 | 150 | 0.6656 | {'precision': 0.7408637873754153, 'recall': 0.826946847960445, 'f1': 0.7815420560747665, 'number': 809} | {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119} | {'precision': 0.7724077328646749, 'recall': 0.8253521126760563, 'f1': 0.7980027235587837, 'number': 1065} | 0.7315 | 0.7958 | 0.7623 | 0.8127 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.57.3
78
+ - Pytorch 2.9.0+cu126
79
+ - Datasets 4.0.0
80
+ - Tokenizers 0.22.1
logs/events.out.tfevents.1766262697.db5936e82183.1654.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4415dab5490646dcbe3899a573b7f7d45a8a217610e34d8ceed25ecef93a0ad1
3
- size 15108
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e19598dcbff4f60657c8e3fd8fbd4b61b409b204a91f070b7ff705748ccebcee
3
+ size 16177
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "extra_special_tokens": {},
57
+ "mask_token": "[MASK]",
58
+ "model_max_length": 512,
59
+ "never_split": null,
60
+ "only_label_first_subword": true,
61
+ "pad_token": "[PAD]",
62
+ "pad_token_box": [
63
+ 0,
64
+ 0,
65
+ 0,
66
+ 0
67
+ ],
68
+ "pad_token_label": -100,
69
+ "processor_class": "LayoutLMv2Processor",
70
+ "sep_token": "[SEP]",
71
+ "sep_token_box": [
72
+ 1000,
73
+ 1000,
74
+ 1000,
75
+ 1000
76
+ ],
77
+ "strip_accents": null,
78
+ "tokenize_chinese_chars": true,
79
+ "tokenizer_class": "LayoutLMv2Tokenizer",
80
+ "unk_token": "[UNK]"
81
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff