End of training
Browse files- README.md +80 -0
- logs/events.out.tfevents.1766262697.db5936e82183.1654.0 +2 -2
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +81 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: mit
|
| 4 |
+
base_model: microsoft/layoutlm-base-uncased
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
model-index:
|
| 8 |
+
- name: layoutlm-funsd
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# layoutlm-funsd
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 0.6656
|
| 20 |
+
- Answer: {'precision': 0.7408637873754153, 'recall': 0.826946847960445, 'f1': 0.7815420560747665, 'number': 809}
|
| 21 |
+
- Header: {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119}
|
| 22 |
+
- Question: {'precision': 0.7724077328646749, 'recall': 0.8253521126760563, 'f1': 0.7980027235587837, 'number': 1065}
|
| 23 |
+
- Overall Precision: 0.7315
|
| 24 |
+
- Overall Recall: 0.7958
|
| 25 |
+
- Overall F1: 0.7623
|
| 26 |
+
- Overall Accuracy: 0.8127
|
| 27 |
+
|
| 28 |
+
## Model description
|
| 29 |
+
|
| 30 |
+
More information needed
|
| 31 |
+
|
| 32 |
+
## Intended uses & limitations
|
| 33 |
+
|
| 34 |
+
More information needed
|
| 35 |
+
|
| 36 |
+
## Training and evaluation data
|
| 37 |
+
|
| 38 |
+
More information needed
|
| 39 |
+
|
| 40 |
+
## Training procedure
|
| 41 |
+
|
| 42 |
+
### Training hyperparameters
|
| 43 |
+
|
| 44 |
+
The following hyperparameters were used during training:
|
| 45 |
+
- learning_rate: 3e-05
|
| 46 |
+
- train_batch_size: 16
|
| 47 |
+
- eval_batch_size: 8
|
| 48 |
+
- seed: 42
|
| 49 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 50 |
+
- lr_scheduler_type: linear
|
| 51 |
+
- num_epochs: 15
|
| 52 |
+
- mixed_precision_training: Native AMP
|
| 53 |
+
|
| 54 |
+
### Training results
|
| 55 |
+
|
| 56 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
| 57 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
| 58 |
+
| 1.8138 | 1.0 | 10 | 1.6087 | {'precision': 0.03215434083601286, 'recall': 0.037082818294190356, 'f1': 0.03444316877152698, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20825335892514396, 'recall': 0.20375586854460093, 'f1': 0.2059800664451827, 'number': 1065} | 0.1251 | 0.1239 | 0.1245 | 0.3836 |
|
| 59 |
+
| 1.4355 | 2.0 | 20 | 1.2532 | {'precision': 0.22752043596730245, 'recall': 0.20642768850432633, 'f1': 0.21646143875567075, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4494296577946768, 'recall': 0.5549295774647888, 'f1': 0.49663865546218483, 'number': 1065} | 0.3699 | 0.3803 | 0.3751 | 0.5848 |
|
| 60 |
+
| 1.106 | 3.0 | 30 | 0.9895 | {'precision': 0.49122807017543857, 'recall': 0.553770086526576, 'f1': 0.5206275421266705, 'number': 809} | {'precision': 0.038461538461538464, 'recall': 0.008403361344537815, 'f1': 0.013793103448275862, 'number': 119} | {'precision': 0.57109375, 'recall': 0.6863849765258216, 'f1': 0.623454157782516, 'number': 1065} | 0.5320 | 0.5921 | 0.5604 | 0.6946 |
|
| 61 |
+
| 0.8611 | 4.0 | 40 | 0.8055 | {'precision': 0.6096807415036045, 'recall': 0.7317676143386898, 'f1': 0.6651685393258427, 'number': 809} | {'precision': 0.19148936170212766, 'recall': 0.07563025210084033, 'f1': 0.10843373493975902, 'number': 119} | {'precision': 0.663527397260274, 'recall': 0.7276995305164319, 'f1': 0.6941334527541425, 'number': 1065} | 0.6295 | 0.6904 | 0.6585 | 0.7575 |
|
| 62 |
+
| 0.684 | 5.0 | 50 | 0.7200 | {'precision': 0.6620021528525296, 'recall': 0.7601977750309024, 'f1': 0.70771001150748, 'number': 809} | {'precision': 0.23529411764705882, 'recall': 0.16806722689075632, 'f1': 0.19607843137254902, 'number': 119} | {'precision': 0.6933010492332526, 'recall': 0.8065727699530516, 'f1': 0.7456597222222223, 'number': 1065} | 0.6631 | 0.7496 | 0.7037 | 0.7868 |
|
| 63 |
+
| 0.5693 | 6.0 | 60 | 0.6933 | {'precision': 0.6771488469601677, 'recall': 0.7985166872682324, 'f1': 0.7328417470221215, 'number': 809} | {'precision': 0.20202020202020202, 'recall': 0.16806722689075632, 'f1': 0.1834862385321101, 'number': 119} | {'precision': 0.7029787234042553, 'recall': 0.7755868544600939, 'f1': 0.7375, 'number': 1065} | 0.6697 | 0.7486 | 0.7069 | 0.7882 |
|
| 64 |
+
| 0.4931 | 7.0 | 70 | 0.6542 | {'precision': 0.6927138331573389, 'recall': 0.8108776266996292, 'f1': 0.7471526195899771, 'number': 809} | {'precision': 0.2689075630252101, 'recall': 0.2689075630252101, 'f1': 0.2689075630252101, 'number': 119} | {'precision': 0.729043183742591, 'recall': 0.8084507042253521, 'f1': 0.7666963490650045, 'number': 1065} | 0.6894 | 0.7772 | 0.7307 | 0.8042 |
|
| 65 |
+
| 0.4267 | 8.0 | 80 | 0.6503 | {'precision': 0.7034700315457413, 'recall': 0.826946847960445, 'f1': 0.7602272727272728, 'number': 809} | {'precision': 0.275, 'recall': 0.2773109243697479, 'f1': 0.27615062761506276, 'number': 119} | {'precision': 0.7510656436487638, 'recall': 0.8272300469483568, 'f1': 0.7873100983020554, 'number': 1065} | 0.7054 | 0.7943 | 0.7472 | 0.8070 |
|
| 66 |
+
| 0.3872 | 9.0 | 90 | 0.6552 | {'precision': 0.7311111111111112, 'recall': 0.8133498145859085, 'f1': 0.770040959625512, 'number': 809} | {'precision': 0.29906542056074764, 'recall': 0.2689075630252101, 'f1': 0.28318584070796454, 'number': 119} | {'precision': 0.7558239861949957, 'recall': 0.8225352112676056, 'f1': 0.787769784172662, 'number': 1065} | 0.7230 | 0.7858 | 0.7531 | 0.8113 |
|
| 67 |
+
| 0.3651 | 10.0 | 100 | 0.6531 | {'precision': 0.7281659388646288, 'recall': 0.8244746600741656, 'f1': 0.7733333333333332, 'number': 809} | {'precision': 0.29838709677419356, 'recall': 0.31092436974789917, 'f1': 0.3045267489711935, 'number': 119} | {'precision': 0.756872852233677, 'recall': 0.8272300469483568, 'f1': 0.7904890085240016, 'number': 1065} | 0.7191 | 0.7953 | 0.7553 | 0.8144 |
|
| 68 |
+
| 0.3186 | 11.0 | 110 | 0.6525 | {'precision': 0.7268770402611534, 'recall': 0.8257107540173053, 'f1': 0.773148148148148, 'number': 809} | {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119} | {'precision': 0.7627705627705628, 'recall': 0.8272300469483568, 'f1': 0.7936936936936936, 'number': 1065} | 0.7221 | 0.7968 | 0.7576 | 0.8131 |
|
| 69 |
+
| 0.303 | 12.0 | 120 | 0.6564 | {'precision': 0.7306843267108167, 'recall': 0.8182941903584673, 'f1': 0.7720116618075801, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.31932773109243695, 'f1': 0.3261802575107296, 'number': 119} | {'precision': 0.7755102040816326, 'recall': 0.8206572769953052, 'f1': 0.7974452554744526, 'number': 1065} | 0.7331 | 0.7898 | 0.7604 | 0.8127 |
|
| 70 |
+
| 0.2847 | 13.0 | 130 | 0.6678 | {'precision': 0.7435320584926884, 'recall': 0.8170580964153276, 'f1': 0.7785630153121318, 'number': 809} | {'precision': 0.29545454545454547, 'recall': 0.3277310924369748, 'f1': 0.3107569721115538, 'number': 119} | {'precision': 0.7697022767075307, 'recall': 0.8253521126760563, 'f1': 0.7965564114182148, 'number': 1065} | 0.7300 | 0.7923 | 0.7599 | 0.8106 |
|
| 71 |
+
| 0.2689 | 14.0 | 140 | 0.6648 | {'precision': 0.7398015435501654, 'recall': 0.8294190358467244, 'f1': 0.782051282051282, 'number': 809} | {'precision': 0.3046875, 'recall': 0.3277310924369748, 'f1': 0.31578947368421056, 'number': 119} | {'precision': 0.7748460861917327, 'recall': 0.8272300469483568, 'f1': 0.8001816530426885, 'number': 1065} | 0.7325 | 0.7983 | 0.7640 | 0.8123 |
|
| 72 |
+
| 0.2642 | 15.0 | 150 | 0.6656 | {'precision': 0.7408637873754153, 'recall': 0.826946847960445, 'f1': 0.7815420560747665, 'number': 809} | {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119} | {'precision': 0.7724077328646749, 'recall': 0.8253521126760563, 'f1': 0.7980027235587837, 'number': 1065} | 0.7315 | 0.7958 | 0.7623 | 0.8127 |
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
### Framework versions
|
| 76 |
+
|
| 77 |
+
- Transformers 4.57.3
|
| 78 |
+
- Pytorch 2.9.0+cu126
|
| 79 |
+
- Datasets 4.0.0
|
| 80 |
+
- Tokenizers 0.22.1
|
logs/events.out.tfevents.1766262697.db5936e82183.1654.0
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e19598dcbff4f60657c8e3fd8fbd4b61b409b204a91f070b7ff705748ccebcee
|
| 3 |
+
size 16177
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"apply_ocr": true,
|
| 3 |
+
"do_resize": true,
|
| 4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
| 5 |
+
"ocr_lang": null,
|
| 6 |
+
"processor_class": "LayoutLMv2Processor",
|
| 7 |
+
"resample": 2,
|
| 8 |
+
"size": {
|
| 9 |
+
"height": 224,
|
| 10 |
+
"width": 224
|
| 11 |
+
},
|
| 12 |
+
"tesseract_config": ""
|
| 13 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"additional_special_tokens": [],
|
| 45 |
+
"apply_ocr": false,
|
| 46 |
+
"clean_up_tokenization_spaces": false,
|
| 47 |
+
"cls_token": "[CLS]",
|
| 48 |
+
"cls_token_box": [
|
| 49 |
+
0,
|
| 50 |
+
0,
|
| 51 |
+
0,
|
| 52 |
+
0
|
| 53 |
+
],
|
| 54 |
+
"do_basic_tokenize": true,
|
| 55 |
+
"do_lower_case": true,
|
| 56 |
+
"extra_special_tokens": {},
|
| 57 |
+
"mask_token": "[MASK]",
|
| 58 |
+
"model_max_length": 512,
|
| 59 |
+
"never_split": null,
|
| 60 |
+
"only_label_first_subword": true,
|
| 61 |
+
"pad_token": "[PAD]",
|
| 62 |
+
"pad_token_box": [
|
| 63 |
+
0,
|
| 64 |
+
0,
|
| 65 |
+
0,
|
| 66 |
+
0
|
| 67 |
+
],
|
| 68 |
+
"pad_token_label": -100,
|
| 69 |
+
"processor_class": "LayoutLMv2Processor",
|
| 70 |
+
"sep_token": "[SEP]",
|
| 71 |
+
"sep_token_box": [
|
| 72 |
+
1000,
|
| 73 |
+
1000,
|
| 74 |
+
1000,
|
| 75 |
+
1000
|
| 76 |
+
],
|
| 77 |
+
"strip_accents": null,
|
| 78 |
+
"tokenize_chinese_chars": true,
|
| 79 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
| 80 |
+
"unk_token": "[UNK]"
|
| 81 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|