EchoBomber
commited on
Commit
•
ff0ed8e
1
Parent(s):
1dc30a9
Upload PPO MountainCar-v0 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-MountainCar-v0.zip +3 -0
- ppo-MountainCar-v0/_stable_baselines3_version +1 -0
- ppo-MountainCar-v0/data +99 -0
- ppo-MountainCar-v0/policy.optimizer.pth +3 -0
- ppo-MountainCar-v0/policy.pth +3 -0
- ppo-MountainCar-v0/pytorch_variables.pth +3 -0
- ppo-MountainCar-v0/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: MountainCar-v0
|
16 |
+
type: MountainCar-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -200.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **MountainCar-v0**
|
25 |
+
This is a trained model of a **PPO** agent playing **MountainCar-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa05b161ab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa05b161b40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa05b161bd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa05b161c60>", "_build": "<function ActorCriticPolicy._build at 0x7fa05b161cf0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa05b161d80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa05b161e10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa05b161ea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa05b161f30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa05b161fc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa05b162050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa05b1620e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa05b156c80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690345583827562206, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAO56A7/WLq470I/VvhMS1TvFcfO+DxbIu4MuA79iMSI8q3zxvvvur7v2K9W+uN46PK1K17595xw88zffvoAcNbpbiNm+UwL8O6zZBb8N6FY8BAQAv/FwhLuh+Oy+SaSzOznf9b71JQE8v4vFvlXEOLw0kuS+EGeiOfdA4L6lnEw8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CGbpRYRujzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGbpMWXTmXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGbpHavicYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGbpCSA6MjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGclBSDRMOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGck7hegL7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGck1qFh5PdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckv5gw49dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckcBEKE4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckW5Yoy9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckQOnVG1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckLFXJYDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckFi8WbgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckAJ9iMHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcj7BwdbQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcj1wo9cKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcjwSamXPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcjrNW2gGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcjmU4aP0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcjhOP/70dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv9dXT3IudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv9XsgMc7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv9RzijtYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv9MINVindX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv84T9KmLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8zQ/oq1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8sq8UVSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8nhKlHjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8iGnGbTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8cwxnFpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8Xrt3OfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8SdvsJIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8NBnjABdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8IF/x2CdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8DDjzZpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv7961LJ0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6384xUOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6yM1jy4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6sS00FbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6ml67d0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6SxqwhXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6NjLB9DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6G6f8MvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6BwMpgDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw58twrDqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw53oLXtjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5ysCDEndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5thNM4+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5oIOYpldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5jIaLn+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5eKsMiKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5ZHNHH4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx26DGtITdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx20UGmk4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2uZkTYedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2ornTy8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2U2UB4mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2PoV2zOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2I/JNj9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2D0163RdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1+dbxEwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx15IH1OCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx10Cih38dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1u4wyqNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1pcophGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1klNUOvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1frrxAjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1akhzNmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyy9sabWmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyy4EwFkhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyyJsO5KdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyscyWRjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyYnfEXMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyTtb9qDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyNLDhtMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyIKtxMndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyC0WuYAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyx9jwx33dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyx4cFQl9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyxzLfUF0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyxttygf2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyxoouwotdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyxjmSyMUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyxedkJ8fdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzsMpgCwKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzsHE/B3zdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzsBNmDlHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzr7tRekYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrn9NvfkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzri2DxsmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrcSGrS3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrXLeQ+2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrRtxdY5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrMgU1yedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrHavicYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrCNS619dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzq8xsVL0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzq3vQWvbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzqyu6mO3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzqtnwob5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAmpmZvylcj72UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-MountainCar-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:701f65b7247dd6203b03fce93f8df96d760b6c1dd4f5f3935308f99b6015669d
|
3 |
+
size 135469
|
ppo-MountainCar-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-MountainCar-v0/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa05b161ab0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa05b161b40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa05b161bd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa05b161c60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa05b161cf0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa05b161d80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa05b161e10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa05b161ea0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa05b161f30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa05b161fc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa05b162050>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa05b1620e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa05b156c80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690345583827562206,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAO56A7/WLq470I/VvhMS1TvFcfO+DxbIu4MuA79iMSI8q3zxvvvur7v2K9W+uN46PK1K17595xw88zffvoAcNbpbiNm+UwL8O6zZBb8N6FY8BAQAv/FwhLuh+Oy+SaSzOznf9b71JQE8v4vFvlXEOLw0kuS+EGeiOfdA4L6lnEw8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CGbpRYRujzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGbpMWXTmXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGbpHavicYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGbpCSA6MjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGclBSDRMOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGck7hegL7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGck1qFh5PdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckv5gw49dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckcBEKE4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckW5Yoy9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckQOnVG1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckLFXJYDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckFi8WbgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGckAJ9iMHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcj7BwdbQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcj1wo9cKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcjwSamXPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcjrNW2gGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcjmU4aP0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGcjhOP/70dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv9dXT3IudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv9XsgMc7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv9RzijtYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv9MINVindX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv84T9KmLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8zQ/oq1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8sq8UVSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8nhKlHjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8iGnGbTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8cwxnFpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8Xrt3OfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8SdvsJIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8NBnjABdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8IF/x2CdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv8DDjzZpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGv7961LJ0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6384xUOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6yM1jy4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6sS00FbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6ml67d0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6SxqwhXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6NjLB9DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6G6f8MvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw6BwMpgDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw58twrDqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw53oLXtjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5ysCDEndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5thNM4+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5oIOYpldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5jIaLn+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5eKsMiKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGw5ZHNHH4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx26DGtITdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx20UGmk4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2uZkTYedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2ornTy8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2U2UB4mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2PoV2zOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2I/JNj9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx2D0163RdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1+dbxEwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx15IH1OCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx10Cih38dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1u4wyqNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1pcophGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1klNUOvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1frrxAjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGx1akhzNmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyy9sabWmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyy4EwFkhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyyJsO5KdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyscyWRjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyYnfEXMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyTtb9qDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyNLDhtMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyIKtxMndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyyC0WuYAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyx9jwx33dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyx4cFQl9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyxzLfUF0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyxttygf2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyxoouwotdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyxjmSyMUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGyxedkJ8fdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzsMpgCwKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzsHE/B3zdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzsBNmDlHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzr7tRekYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrn9NvfkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzri2DxsmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrcSGrS3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrXLeQ+2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrRtxdY5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrMgU1yedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrHavicYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzrCNS619dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzq8xsVL0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzq3vQWvbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzqyu6mO3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CGzqtnwob5dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 496,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAmpmZvylcj72UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True]",
|
60 |
+
"bounded_above": "[ True True]",
|
61 |
+
"_shape": [
|
62 |
+
2
|
63 |
+
],
|
64 |
+
"low": "[-1.2 -0.07]",
|
65 |
+
"high": "[0.6 0.07]",
|
66 |
+
"low_repr": "[-1.2 -0.07]",
|
67 |
+
"high_repr": "[0.6 0.07]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "3",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 8,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-MountainCar-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70871f0dd51b28d0e6d7b3c57cce31817a03f7de955fd8fcc85aec32d267acef
|
3 |
+
size 81273
|
ppo-MountainCar-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5220befd5cfb8729726ec887ae9ff0a0545980914d5afa35921ee963f1ed7583
|
3 |
+
size 40001
|
ppo-MountainCar-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-MountainCar-v0/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (160 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-26T04:40:01.775938"}
|