End of training
Browse files
README.md
CHANGED
|
@@ -25,13 +25,13 @@ model-index:
|
|
| 25 |
metrics:
|
| 26 |
- name: Precision
|
| 27 |
type: precision
|
| 28 |
-
value: 0.
|
| 29 |
- name: Recall
|
| 30 |
type: recall
|
| 31 |
-
value: 0.
|
| 32 |
- name: F1
|
| 33 |
type: f1
|
| 34 |
-
value: 0.
|
| 35 |
---
|
| 36 |
|
| 37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 41 |
|
| 42 |
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on the source_data dataset.
|
| 43 |
It achieves the following results on the evaluation set:
|
| 44 |
-
- Loss: 0.
|
| 45 |
-
- Accuracy Score: 0.
|
| 46 |
-
- Precision: 0.
|
| 47 |
-
- Recall: 0.
|
| 48 |
-
- F1: 0.
|
| 49 |
|
| 50 |
## Model description
|
| 51 |
|
|
@@ -79,7 +79,7 @@ No additional optimizer arguments
|
|
| 79 |
|
| 80 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
|
| 81 |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
|
| 82 |
-
| 0.
|
| 83 |
|
| 84 |
|
| 85 |
### Framework versions
|
|
|
|
| 25 |
metrics:
|
| 26 |
- name: Precision
|
| 27 |
type: precision
|
| 28 |
+
value: 0.9612769172648281
|
| 29 |
- name: Recall
|
| 30 |
type: recall
|
| 31 |
+
value: 0.9695180034292246
|
| 32 |
- name: F1
|
| 33 |
type: f1
|
| 34 |
+
value: 0.9653798729014512
|
| 35 |
---
|
| 36 |
|
| 37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 41 |
|
| 42 |
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on the source_data dataset.
|
| 43 |
It achieves the following results on the evaluation set:
|
| 44 |
+
- Loss: 0.0068
|
| 45 |
+
- Accuracy Score: 0.9981
|
| 46 |
+
- Precision: 0.9613
|
| 47 |
+
- Recall: 0.9695
|
| 48 |
+
- F1: 0.9654
|
| 49 |
|
| 50 |
## Model description
|
| 51 |
|
|
|
|
| 79 |
|
| 80 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
|
| 81 |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
|
| 82 |
+
| 0.0046 | 0.9994 | 863 | 0.0068 | 0.9981 | 0.9613 | 0.9695 | 0.9654 |
|
| 83 |
|
| 84 |
|
| 85 |
### Framework versions
|