drAbreu commited on
Commit
07d004d
·
verified ·
1 Parent(s): 5a412f1

End of training

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -25,13 +25,13 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9463049579045837
29
  - name: Recall
30
  type: recall
31
- value: 0.9636121165936369
32
  - name: F1
33
  type: f1
34
- value: 0.9548801208231075
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.0082
45
- - Accuracy Score: 0.9978
46
- - Precision: 0.9463
47
- - Recall: 0.9636
48
- - F1: 0.9549
49
 
50
  ## Model description
51
 
@@ -79,7 +79,7 @@ No additional optimizer arguments
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
81
  |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
82
- | 0.0047 | 0.9994 | 863 | 0.0082 | 0.9978 | 0.9463 | 0.9636 | 0.9549 |
83
 
84
 
85
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9612769172648281
29
  - name: Recall
30
  type: recall
31
+ value: 0.9695180034292246
32
  - name: F1
33
  type: f1
34
+ value: 0.9653798729014512
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.0068
45
+ - Accuracy Score: 0.9981
46
+ - Precision: 0.9613
47
+ - Recall: 0.9695
48
+ - F1: 0.9654
49
 
50
  ## Model description
51
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
81
  |:-------------:|:------:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
82
+ | 0.0046 | 0.9994 | 863 | 0.0068 | 0.9981 | 0.9613 | 0.9695 | 0.9654 |
83
 
84
 
85
  ### Framework versions