ELITE / train_global.py
csyxwei's picture
readme and new requirements
2e7bc51
import argparse
import itertools
import math
import os
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, LMSDiscreteScheduler
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from transformers.modeling_outputs import BaseModelOutputWithPooling
from transformers.utils import (
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from transformers.models.clip.configuration_clip import CLIPTextConfig
from transformers.models.clip.modeling_clip import CLIP_TEXT_INPUTS_DOCSTRING, _expand_mask
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel
from typing import Optional, Tuple, Union
from datasets import OpenImagesDataset
class Mapper(nn.Module):
def __init__(self,
input_dim: int,
output_dim: int,
):
super(Mapper, self).__init__()
for i in range(5):
setattr(self, f'mapping_{i}', nn.Sequential(nn.Linear(input_dim, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, output_dim)))
setattr(self, f'mapping_patch_{i}', nn.Sequential(nn.Linear(input_dim, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, output_dim)))
def forward(self, embs):
hidden_states = ()
for i, emb in enumerate(embs):
hidden_state = getattr(self, f'mapping_{i}')(emb[:, :1]) + getattr(self, f'mapping_patch_{i}')(emb[:, 1:]).mean(dim=1, keepdim=True)
hidden_states += (hidden_state, )
hidden_states = torch.cat(hidden_states, dim=1)
return hidden_states
def _build_causal_attention_mask(bsz, seq_len, dtype):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min))
mask.triu_(1) # zero out the lower diagonal
mask = mask.unsqueeze(1) # expand mask
return mask
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
def inj_forward_text(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify either input_ids")
r_input_ids = input_ids['input_ids']
if 'inj_embedding' in input_ids:
inj_embedding = input_ids['inj_embedding']
inj_index = input_ids['inj_index']
else:
inj_embedding = None
inj_index = None
input_shape = r_input_ids.size()
r_input_ids = r_input_ids.view(-1, input_shape[-1])
inputs_embeds = self.embeddings.token_embedding(r_input_ids)
new_inputs_embeds = inputs_embeds.clone()
if inj_embedding is not None:
emb_length = inj_embedding.shape[1]
for bsz, idx in enumerate(inj_index):
lll = new_inputs_embeds[bsz, idx+emb_length:].shape[0]
new_inputs_embeds[bsz, idx+emb_length:] = inputs_embeds[bsz, idx+1:idx+1+lll]
new_inputs_embeds[bsz, idx:idx+emb_length] = inj_embedding[bsz]
hidden_states = self.embeddings(input_ids=r_input_ids, position_ids=position_ids, inputs_embeds=new_inputs_embeds)
bsz, seq_len = input_shape
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
hidden_states.device
)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=r_input_ids.device), r_input_ids.to(torch.int).argmax(dim=-1)
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def inj_forward_crossattention(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
context = encoder_hidden_states
if context is not None:
context_tensor = context["CONTEXT_TENSOR"]
else:
context_tensor = hidden_states
batch_size, sequence_length, _ = hidden_states.shape
query = self.to_q(hidden_states)
if context is not None:
key = self.to_k_global(context_tensor)
value = self.to_v_global(context_tensor)
else:
key = self.to_k(context_tensor)
value = self.to_v(context_tensor)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
attention_scores = torch.matmul(query, key.transpose(-1, -2))
attention_scores = attention_scores * self.scale
attention_probs = attention_scores.softmax(dim=-1)
hidden_states = torch.matmul(attention_probs, value)
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
logger = get_logger(__name__)
def save_progress(mapper, accelerator, args, step=None):
logger.info("Saving embeddings")
state_dict = accelerator.unwrap_model(mapper).state_dict()
if step is not None:
torch.save(state_dict, os.path.join(args.output_dir, f"mapper_{str(step).zfill(6)}.pt"))
else:
torch.save(state_dict, os.path.join(args.output_dir, "mapper.pt"))
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--save_steps",
type=int,
default=500,
help="Save learned_embeds.bin every X updates steps.",
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
)
parser.add_argument(
"--global_mapper_path", type=str, default=None, help="If not none, the training will start from the given checkpoints."
)
parser.add_argument(
"--placeholder_token",
type=str,
default=None,
required=True,
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=5000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=True,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.train_data_dir is None:
raise ValueError("You must specify a train data directory.")
return args
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def freeze_params(params):
for param in params:
param.requires_grad = False
def unfreeze_params(params):
for param in params:
param.requires_grad = True
def th2image(image):
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(1, 2, 0).numpy()
image = (image * 255).round().astype("uint8")
return Image.fromarray(image)
@torch.no_grad()
def validation(example, tokenizer, image_encoder, text_encoder, unet, mapper, vae, device, guidance_scale, token_index='full', seed=None):
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
uncond_input = tokenizer(
[''] * example["pixel_values"].shape[0],
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
)
uncond_embeddings = text_encoder({'input_ids':uncond_input.input_ids.to(device)})[0]
if seed is None:
latents = torch.randn(
(example["pixel_values"].shape[0], unet.in_channels, 64, 64)
)
else:
generator = torch.manual_seed(seed)
latents = torch.randn(
(example["pixel_values"].shape[0], unet.in_channels, 64, 64), generator=generator,
)
latents = latents.to(example["pixel_values_clip"])
scheduler.set_timesteps(100)
latents = latents * scheduler.init_noise_sigma
placeholder_idx = example["index"]
image = F.interpolate(example["pixel_values_clip"], (224, 224), mode='bilinear')
image_features = image_encoder(image, output_hidden_states=True)
image_embeddings = [image_features[0], image_features[2][4], image_features[2][8], image_features[2][12],
image_features[2][16]]
image_embeddings = [emb.detach() for emb in image_embeddings]
inj_embedding = mapper(image_embeddings)
if token_index != 'full':
token_index = int(token_index)
inj_embedding = inj_embedding[:, token_index:token_index + 1, :]
encoder_hidden_states = text_encoder({'input_ids': example["input_ids"],
"inj_embedding": inj_embedding,
"inj_index": placeholder_idx})[0]
for t in tqdm(scheduler.timesteps):
latent_model_input = scheduler.scale_model_input(latents, t)
noise_pred_text = unet(
latent_model_input,
t,
encoder_hidden_states={
"CONTEXT_TENSOR": encoder_hidden_states,
}
).sample
latent_model_input = scheduler.scale_model_input(latents, t)
noise_pred_uncond = unet(
latent_model_input,
t,
encoder_hidden_states={
"CONTEXT_TENSOR": uncond_embeddings,
}
).sample
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
_latents = 1 / 0.18215 * latents.clone()
images = vae.decode(_latents).sample
ret_pil_images = [th2image(image) for image in images]
return ret_pil_images
def main():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer and add the placeholder token as a additional special token
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# replace the forward method of the text encoder to inject the word embedding
for _module in text_encoder.modules():
if _module.__class__.__name__ == "CLIPTextTransformer":
_module.__class__.__call__ = inj_forward_text
image_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14")
mapper = Mapper(input_dim=1024, output_dim=768)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
# replace the forward method of the crossattention to finetune the to_k and to_v layers
for _name, _module in unet.named_modules():
if _module.__class__.__name__ == "CrossAttention":
if 'attn1' in _name: continue
_module.__class__.__call__ = inj_forward_crossattention
shape = _module.to_k.weight.shape
to_k_global = nn.Linear(shape[1], shape[0], bias=False)
to_k_global.weight.data = _module.to_k.weight.data.clone()
mapper.add_module(f'{_name.replace(".", "_")}_to_k', to_k_global)
shape = _module.to_v.weight.shape
to_v_global = nn.Linear(shape[1], shape[0], bias=False)
to_v_global.weight.data = _module.to_v.weight.data.clone()
mapper.add_module(f'{_name.replace(".", "_")}_to_v', to_v_global)
if args.global_mapper_path is None:
_module.add_module('to_k_global', to_k_global)
_module.add_module('to_v_global', to_v_global)
if args.global_mapper_path is not None:
mapper.load_state_dict(torch.load(args.global_mapper_path, map_location='cpu'))
for _name, _module in unet.named_modules():
if _module.__class__.__name__ == "CrossAttention":
if 'attn1' in _name: continue
_module.add_module('to_k_global', getattr(mapper, f'{_name.replace(".", "_")}_to_k'))
_module.add_module('to_v_global', getattr(mapper, f'{_name.replace(".", "_")}_to_v'))
# Freeze vae and unet, encoder
freeze_params(vae.parameters())
freeze_params(unet.parameters())
freeze_params(text_encoder.parameters())
freeze_params(image_encoder.parameters())
# Unfreeze the mapper
unfreeze_params(mapper.parameters())
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
itertools.chain(mapper.parameters()), # only optimize the embeddings
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
train_dataset = OpenImagesDataset(
data_root=args.train_data_dir,
tokenizer=tokenizer,
size=args.resolution,
placeholder_token=args.placeholder_token,
set="test",
)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
mapper, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
mapper, optimizer, train_dataloader, lr_scheduler
)
# Move vae, unet, and encoders to device
vae.to(accelerator.device)
unet.to(accelerator.device)
image_encoder.to(accelerator.device)
text_encoder.to(accelerator.device)
# Keep vae, unet and image_encoder in eval model as we don't train these
vae.eval()
unet.eval()
image_encoder.eval()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initialize automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("elite", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
for epoch in range(args.num_train_epochs):
mapper.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(mapper):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn(latents.shape).to(latents.device)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
placeholder_idx = batch["index"]
image = F.interpolate(batch["pixel_values_clip"], (224, 224), mode='bilinear')
image_features = image_encoder(image, output_hidden_states=True)
image_embeddings = [image_features[0], image_features[2][4], image_features[2][8], image_features[2][12], image_features[2][16]]
image_embeddings = [emb.detach() for emb in image_embeddings]
inj_embedding = mapper(image_embeddings)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder({'input_ids': batch["input_ids"],
"inj_embedding": inj_embedding,
"inj_index": placeholder_idx.detach()})[0]
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states={
"CONTEXT_TENSOR": encoder_hidden_states,
}).sample
loss_mle = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
loss_reg = torch.mean(torch.abs(inj_embedding)) * 0.01
loss = loss_mle + loss_reg
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(mapper.parameters(), 1)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.save_steps == 0:
save_progress(mapper, accelerator, args, global_step)
syn_images = validation(batch, tokenizer, image_encoder, text_encoder, unet, mapper, vae, batch["pixel_values_clip"].device, 5)
gt_images = [th2image(img) for img in batch["pixel_values"]]
img_list = []
for syn, gt in zip(syn_images, gt_images):
img_list.append(np.concatenate((np.array(syn), np.array(gt)), axis=1))
img_list = np.concatenate(img_list, axis=0)
Image.fromarray(img_list).save(os.path.join(args.output_dir, f"{str(global_step).zfill(5)}.jpg"))
logs = {"loss_mle": loss_mle.detach().item(), "loss_reg": loss_reg.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
if accelerator.is_main_process:
save_progress(mapper, accelerator, args)
accelerator.end_training()
if __name__ == "__main__":
main()