|
""" |
|
# Example: Use Numba to speed up the retrieval process |
|
|
|
```bash |
|
pip install "bm25s[full]" numba |
|
``` |
|
|
|
To build an index, please refer to the `examples/index_and_upload_to_hf.py` script. |
|
|
|
Now, to run this script, execute: |
|
```bash |
|
python examples/retrieve_with_numba.py |
|
``` |
|
""" |
|
import os |
|
import Stemmer |
|
|
|
import bm25s.hf |
|
|
|
def main(repo_name="xhluca/bm25s-fiqa-index"): |
|
queries = [ |
|
"Is chemotherapy effective for treating cancer?", |
|
"Is Cardiac injury is common in critical cases of COVID-19?", |
|
] |
|
|
|
retriever = bm25s.hf.BM25HF.load_from_hub( |
|
repo_name, load_corpus=False, mmap=False |
|
) |
|
|
|
|
|
stemmer = Stemmer.Stemmer("english") |
|
queries_tokenized = bm25s.tokenize(queries, stemmer=stemmer) |
|
|
|
|
|
retriever.activate_numba_scorer() |
|
results = retriever.retrieve(queries_tokenized, k=3, backend_selection="numba") |
|
|
|
result = results.documents[0] |
|
print(f"First score (# 1 result):{results.scores[0, 0]}") |
|
print(f"First result (# 1 result):\n{result[0]}") |
|
|
|
if __name__ == "__main__": |
|
main() |