|
""" |
|
# Example: Indexing Natural Questions |
|
|
|
This shows how to build an index of the natural questions dataset using BM25S. |
|
|
|
To run this example, you need to install the following dependencies: |
|
|
|
```bash |
|
pip install beir bm25s PyStemmer |
|
``` |
|
|
|
Then, run with: |
|
|
|
```bash |
|
python examples/index_nq.py |
|
``` |
|
""" |
|
import beir.util |
|
from beir.datasets.data_loader import GenericDataLoader |
|
import Stemmer |
|
|
|
import bm25s |
|
from bm25s.utils.beir import BASE_URL |
|
|
|
|
|
def main(save_dir="datasets", index_dir="bm25s_indices/nq", dataset="nq"): |
|
data_path = beir.util.download_and_unzip(BASE_URL.format(dataset), save_dir) |
|
corpus, _, __ = GenericDataLoader(data_folder=data_path).load(split="test") |
|
corpus_records = [ |
|
{'id': k, 'title': v["title"], 'text': v["text"]} for k, v in corpus.items() |
|
] |
|
corpus_lst = [r["title"] + " " + r["text"] for r in corpus_records] |
|
|
|
stemmer = Stemmer.Stemmer("english") |
|
corpus_tokenized = bm25s.tokenize(corpus_lst, stemmer=stemmer) |
|
|
|
retriever = bm25s.BM25(corpus=corpus_records) |
|
retriever.index(corpus_tokenized) |
|
retriever.save(index_dir) |
|
|
|
if __name__ == "__main__": |
|
main() |