|
import librosa |
|
import numpy as np |
|
import torch |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
from datasets import load_dataset |
|
|
|
from typing import Dict, List, Any |
|
|
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
|
|
|
|
|
|
|
|
checkpoint = "Dupaja/speecht5_tts" |
|
vocoder_id = "Dupaja/speecht5_hifigan" |
|
dataset_id = "Dupaja/cmu-arctic-xvectors" |
|
|
|
self.model= SpeechT5ForTextToSpeech.from_pretrained(checkpoint) |
|
self.processor = SpeechT5Processor.from_pretrained(checkpoint) |
|
self.vocoder = SpeechT5HifiGan.from_pretrained(vocoder_id) |
|
embeddings_dataset = load_dataset(dataset_id, split="validation", trust_remote_code=True) |
|
self.embeddings_dataset = embeddings_dataset |
|
self.speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) |
|
|
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
|
|
given_text = data.get("inputs", "") |
|
|
|
inputs = self.processor(text=given_text, return_tensors="pt") |
|
|
|
speech = self.model.generate_speech(inputs["input_ids"], self.speaker_embeddings, vocoder=self.vocoder) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return { |
|
"statusCode": 200, |
|
"body": { |
|
"audio": speech.numpy(), |
|
"sampling_rate": 16000 |
|
} |
|
} |
|
|
|
handler = EndpointHandler() |