Update README.md
Browse files
README.md
CHANGED
@@ -8,26 +8,26 @@ datasets:
|
|
8 |
model-index:
|
9 |
- name: yolos-small-Forklift_Object_Detection
|
10 |
results: []
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
-
should probably proofread and complete it, then remove this comment. -->
|
15 |
-
|
16 |
# yolos-small-Forklift_Object_Detection
|
17 |
|
18 |
This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the forklift-object-detection dataset.
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
-
|
23 |
|
24 |
## Intended uses & limitations
|
25 |
|
26 |
-
|
27 |
|
28 |
## Training and evaluation data
|
29 |
|
30 |
-
|
31 |
|
32 |
## Training procedure
|
33 |
|
@@ -44,11 +44,24 @@ The following hyperparameters were used during training:
|
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
### Framework versions
|
50 |
|
51 |
- Transformers 4.31.0
|
52 |
- Pytorch 2.0.1+cu118
|
53 |
- Datasets 2.14.3
|
54 |
-
- Tokenizers 0.13.3
|
|
|
8 |
model-index:
|
9 |
- name: yolos-small-Forklift_Object_Detection
|
10 |
results: []
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
pipeline_tag: object-detection
|
14 |
---
|
15 |
|
|
|
|
|
|
|
16 |
# yolos-small-Forklift_Object_Detection
|
17 |
|
18 |
This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the forklift-object-detection dataset.
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
+
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/tree/main/Computer%20Vision/Object%20Detection/Forklift%20Object%20Detection
|
23 |
|
24 |
## Intended uses & limitations
|
25 |
|
26 |
+
This model is intended to demonstrate my ability to solve a complex problem using technology.
|
27 |
|
28 |
## Training and evaluation data
|
29 |
|
30 |
+
Dataset Source: https://huggingface.co/datasets/keremberke/forklift-object-detection
|
31 |
|
32 |
## Training procedure
|
33 |
|
|
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
+
| Metric Name | IoU | Area Category | maxDets | Metric Value |
|
48 |
+
|:-----:|:-----:|:-----:|:-----:|:-----:|
|
49 |
+
| Average Precision (AP) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.136 |
|
50 |
+
| Average Precision (AP) | IoU=0.50 | area= all | maxDets=100 | 0.400 |
|
51 |
+
| Average Precision (AP) | IoU=0.75 | area= all | maxDets=100 | 0.054 |
|
52 |
+
| Average Precision (AP) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.001 |
|
53 |
+
| Average Precision (AP) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.051 |
|
54 |
+
| Average Precision (AP) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.177 |
|
55 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 1 | 0.178 |
|
56 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 10 | 0.294 |
|
57 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.340 |
|
58 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.075 |
|
59 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.299 |
|
60 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.373 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
- Transformers 4.31.0
|
65 |
- Pytorch 2.0.1+cu118
|
66 |
- Datasets 2.14.3
|
67 |
+
- Tokenizers 0.13.3
|