DunnBC22 commited on
Commit
852f0a8
1 Parent(s): 644da44

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -8
README.md CHANGED
@@ -8,26 +8,26 @@ datasets:
8
  model-index:
9
  - name: yolos-small-Forklift_Object_Detection
10
  results: []
 
 
 
11
  ---
12
 
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
  # yolos-small-Forklift_Object_Detection
17
 
18
  This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the forklift-object-detection dataset.
19
 
20
  ## Model description
21
 
22
- More information needed
23
 
24
  ## Intended uses & limitations
25
 
26
- More information needed
27
 
28
  ## Training and evaluation data
29
 
30
- More information needed
31
 
32
  ## Training procedure
33
 
@@ -44,11 +44,24 @@ The following hyperparameters were used during training:
44
 
45
  ### Training results
46
 
47
-
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  ### Framework versions
50
 
51
  - Transformers 4.31.0
52
  - Pytorch 2.0.1+cu118
53
  - Datasets 2.14.3
54
- - Tokenizers 0.13.3
 
8
  model-index:
9
  - name: yolos-small-Forklift_Object_Detection
10
  results: []
11
+ language:
12
+ - en
13
+ pipeline_tag: object-detection
14
  ---
15
 
 
 
 
16
  # yolos-small-Forklift_Object_Detection
17
 
18
  This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the forklift-object-detection dataset.
19
 
20
  ## Model description
21
 
22
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/tree/main/Computer%20Vision/Object%20Detection/Forklift%20Object%20Detection
23
 
24
  ## Intended uses & limitations
25
 
26
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
27
 
28
  ## Training and evaluation data
29
 
30
+ Dataset Source: https://huggingface.co/datasets/keremberke/forklift-object-detection
31
 
32
  ## Training procedure
33
 
 
44
 
45
  ### Training results
46
 
47
+ | Metric Name | IoU | Area Category | maxDets | Metric Value |
48
+ |:-----:|:-----:|:-----:|:-----:|:-----:|
49
+ | Average Precision (AP) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.136 |
50
+ | Average Precision (AP) | IoU=0.50 | area= all | maxDets=100 | 0.400 |
51
+ | Average Precision (AP) | IoU=0.75 | area= all | maxDets=100 | 0.054 |
52
+ | Average Precision (AP) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.001 |
53
+ | Average Precision (AP) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.051 |
54
+ | Average Precision (AP) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.177 |
55
+ | Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 1 | 0.178 |
56
+ | Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 10 | 0.294 |
57
+ | Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.340 |
58
+ | Average Recall (AR) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.075 |
59
+ | Average Recall (AR) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.299 |
60
+ | Average Recall (AR) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.373 |
61
 
62
  ### Framework versions
63
 
64
  - Transformers 4.31.0
65
  - Pytorch 2.0.1+cu118
66
  - Datasets 2.14.3
67
+ - Tokenizers 0.13.3