DunnBC22 commited on
Commit
60efa5c
1 Parent(s): c37fc6e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - audiofolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: wav2vec2-base-Drum_Kit_Sounds
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # wav2vec2-base-Drum_Kit_Sounds
18
+
19
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.0887
22
+ - Accuracy: 0.7812
23
+ - Weighted f1: 0.7692
24
+ - Micro f1: 0.7812
25
+ - Macro f1: 0.7845
26
+ - Weighted recall: 0.7812
27
+ - Micro recall: 0.7812
28
+ - Macro recall: 0.8187
29
+ - Weighted precision: 0.8717
30
+ - Micro precision: 0.7812
31
+ - Macro precision: 0.8534
32
+
33
+ ## Model description
34
+
35
+ More information needed
36
+
37
+ ## Intended uses & limitations
38
+
39
+ More information needed
40
+
41
+ ## Training and evaluation data
42
+
43
+ More information needed
44
+
45
+ ## Training procedure
46
+
47
+ ### Training hyperparameters
48
+
49
+ The following hyperparameters were used during training:
50
+ - learning_rate: 3e-05
51
+ - train_batch_size: 32
52
+ - eval_batch_size: 32
53
+ - seed: 42
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_ratio: 0.1
57
+ - num_epochs: 12
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
62
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
63
+ | 1.3743 | 1.0 | 4 | 1.3632 | 0.5625 | 0.5801 | 0.5625 | 0.5678 | 0.5625 | 0.5625 | 0.5670 | 0.6786 | 0.5625 | 0.6429 |
64
+ | 1.3074 | 2.0 | 8 | 1.3149 | 0.3438 | 0.2567 | 0.3438 | 0.2696 | 0.3438 | 0.3438 | 0.375 | 0.3067 | 0.3438 | 0.3148 |
65
+ | 1.2393 | 3.0 | 12 | 1.3121 | 0.2188 | 0.0785 | 0.2188 | 0.0897 | 0.2188 | 0.2188 | 0.25 | 0.0479 | 0.2188 | 0.0547 |
66
+ | 1.2317 | 4.0 | 16 | 1.3112 | 0.2812 | 0.1800 | 0.2812 | 0.2057 | 0.2812 | 0.2812 | 0.3214 | 0.2698 | 0.2812 | 0.3083 |
67
+ | 1.2107 | 5.0 | 20 | 1.2604 | 0.4375 | 0.3030 | 0.4375 | 0.3462 | 0.4375 | 0.4375 | 0.5 | 0.2552 | 0.4375 | 0.2917 |
68
+ | 1.1663 | 6.0 | 24 | 1.2112 | 0.4688 | 0.3896 | 0.4688 | 0.4310 | 0.4688 | 0.4688 | 0.5268 | 0.5041 | 0.4688 | 0.5404 |
69
+ | 1.1247 | 7.0 | 28 | 1.1746 | 0.5938 | 0.5143 | 0.5938 | 0.5603 | 0.5938 | 0.5938 | 0.6562 | 0.5220 | 0.5938 | 0.5609 |
70
+ | 1.0856 | 8.0 | 32 | 1.1434 | 0.5938 | 0.5143 | 0.5938 | 0.5603 | 0.5938 | 0.5938 | 0.6562 | 0.5220 | 0.5938 | 0.5609 |
71
+ | 1.0601 | 9.0 | 36 | 1.1417 | 0.6562 | 0.6029 | 0.6562 | 0.6389 | 0.6562 | 0.6562 | 0.7125 | 0.8440 | 0.6562 | 0.8217 |
72
+ | 1.0375 | 10.0 | 40 | 1.1227 | 0.6875 | 0.6582 | 0.6875 | 0.6831 | 0.6875 | 0.6875 | 0.7330 | 0.8457 | 0.6875 | 0.8237 |
73
+ | 1.0168 | 11.0 | 44 | 1.1065 | 0.7812 | 0.7692 | 0.7812 | 0.7845 | 0.7812 | 0.7812 | 0.8187 | 0.8717 | 0.7812 | 0.8534 |
74
+ | 1.0093 | 12.0 | 48 | 1.0887 | 0.7812 | 0.7692 | 0.7812 | 0.7845 | 0.7812 | 0.7812 | 0.8187 | 0.8717 | 0.7812 | 0.8534 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.25.1
80
+ - Pytorch 1.12.1
81
+ - Datasets 2.8.0
82
+ - Tokenizers 0.12.1