Update README.md
Browse files
README.md
CHANGED
@@ -23,14 +23,31 @@ This model is a fine-tuned version of [kssteven/ibert-roberta-base](https://hugg
|
|
23 |
|
24 |
It achieves the following results on the evaluation set:
|
25 |
- Loss: 0.0878
|
26 |
-
- Loc
|
27 |
-
-
|
28 |
-
-
|
29 |
-
-
|
30 |
-
-
|
31 |
-
-
|
32 |
-
-
|
33 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Model description
|
36 |
|
@@ -59,11 +76,12 @@ The following hyperparameters were used during training:
|
|
59 |
|
60 |
### Training results
|
61 |
|
62 |
-
| Training Loss | Epoch | Step
|
63 |
-
|
64 |
-
| 0.1092 | 1.0 | 5795 | 0.0987 |
|
65 |
-
| 0.0723 | 2.0 | 11590 | 0.0878 |
|
66 |
|
|
|
67 |
|
68 |
### Framework versions
|
69 |
|
|
|
23 |
|
24 |
It achieves the following results on the evaluation set:
|
25 |
- Loss: 0.0878
|
26 |
+
- Loc
|
27 |
+
- Precision: 0.9249338624338624
|
28 |
+
- Recall: 0.9393786733837112
|
29 |
+
- F1: 0.9321003082562693
|
30 |
+
- Number: 5955
|
31 |
+
- Misc
|
32 |
+
- Precision: 0.8304751697034656
|
33 |
+
- Recall: 0.9185931634064414
|
34 |
+
- F1: 0.8723144760296463
|
35 |
+
- Number: 5061
|
36 |
+
- Org
|
37 |
+
- Precision: 0.9283453237410072
|
38 |
+
- Recall: 0.9353435778486517
|
39 |
+
- F1: 0.9318313113807049
|
40 |
+
- Number: 3449
|
41 |
+
- Per
|
42 |
+
- Precision: 0.9698098412076064
|
43 |
+
- Recall: 0.9495201535508637
|
44 |
+
- F1: 0.9595577538551062
|
45 |
+
- Number: 5210
|
46 |
+
- Overall
|
47 |
+
- Precision: 0.9107
|
48 |
+
- Recall: 0.9360
|
49 |
+
- F1: 0.9232
|
50 |
+
- Accuracy: 0.9909
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:---------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|
|
81 |
+
| 0.1092 | 1.0 | 5795 | 0.0987 | 0.9125 | 0.9328 | 0.9225 | 5955 | 0.8003 | 0.9091 | 0.8512 | 5061 | 0.9143 | 0.9278 | 0.9210 | 3449 | 0.9714 | 0.9395 | 0.9552 | 5210 | 0.8957 | 0.9276 | 0.9114 | 0.9890 |
|
82 |
+
| 0.0723 | 2.0 | 11590 | 0.0878 | 0.9249 | 0.9394 | 0.9321 | 5955 | 0.8305 | 0.9186 | 0.8723 | 5061 | 0.9283 | 0.9353 | 0.9318 | 3449 | 0.9698 | 0.9495 | 0.9596 | 5210 | 0.9107 | 0.9360 | 0.9232 | 0.9909 |
|
83 |
|
84 |
+
* All values in the above chart arerounded to nearest ten-thousandth.
|
85 |
|
86 |
### Framework versions
|
87 |
|