DunnBC22 commited on
Commit
6490073
·
1 Parent(s): 2ecfbff

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -12
README.md CHANGED
@@ -23,14 +23,31 @@ This model is a fine-tuned version of [kssteven/ibert-roberta-base](https://hugg
23
 
24
  It achieves the following results on the evaluation set:
25
  - Loss: 0.0878
26
- - Loc: {'precision': 0.9249338624338624, 'recall': 0.9393786733837112, 'f1': 0.9321003082562693, 'number': 5955}
27
- - Misc: {'precision': 0.8304751697034656, 'recall': 0.9185931634064414, 'f1': 0.8723144760296463, 'number': 5061}
28
- - Org: {'precision': 0.9283453237410072, 'recall': 0.9353435778486517, 'f1': 0.9318313113807049, 'number': 3449}
29
- - Per: {'precision': 0.9698098412076064, 'recall': 0.9495201535508637, 'f1': 0.9595577538551062, 'number': 5210}
30
- - Overall Precision: 0.9107
31
- - Overall Recall: 0.9360
32
- - Overall F1: 0.9232
33
- - Overall Accuracy: 0.9909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  ## Model description
36
 
@@ -59,11 +76,12 @@ The following hyperparameters were used during training:
59
 
60
  ### Training results
61
 
62
- | Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
63
- |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
64
- | 0.1092 | 1.0 | 5795 | 0.0987 | {'precision': 0.9124507227332457, 'recall': 0.9328295549958019, 'f1': 0.9225276093996512, 'number': 5955} | {'precision': 0.8003130979300748, 'recall': 0.9091088717644734, 'f1': 0.8512488436632748, 'number': 5061} | {'precision': 0.9142857142857143, 'recall': 0.9278051609162076, 'f1': 0.9209958267376601, 'number': 3449} | {'precision': 0.9714229013693193, 'recall': 0.9395393474088292, 'f1': 0.9552151429407748, 'number': 5210} | 0.8957 | 0.9276 | 0.9114 | 0.9890 |
65
- | 0.0723 | 2.0 | 11590 | 0.0878 | {'precision': 0.9249338624338624, 'recall': 0.9393786733837112, 'f1': 0.9321003082562693, 'number': 5955} | {'precision': 0.8304751697034656, 'recall': 0.9185931634064414, 'f1': 0.8723144760296463, 'number': 5061} | {'precision': 0.9283453237410072, 'recall': 0.9353435778486517, 'f1': 0.9318313113807049, 'number': 3449} | {'precision': 0.9698098412076064, 'recall': 0.9495201535508637, 'f1': 0.9595577538551062, 'number': 5210} | 0.9107 | 0.9360 | 0.9232 | 0.9909 |
66
 
 
67
 
68
  ### Framework versions
69
 
 
23
 
24
  It achieves the following results on the evaluation set:
25
  - Loss: 0.0878
26
+ - Loc
27
+ - Precision: 0.9249338624338624
28
+ - Recall: 0.9393786733837112
29
+ - F1: 0.9321003082562693
30
+ - Number: 5955
31
+ - Misc
32
+ - Precision: 0.8304751697034656
33
+ - Recall: 0.9185931634064414
34
+ - F1: 0.8723144760296463
35
+ - Number: 5061
36
+ - Org
37
+ - Precision: 0.9283453237410072
38
+ - Recall: 0.9353435778486517
39
+ - F1: 0.9318313113807049
40
+ - Number: 3449
41
+ - Per
42
+ - Precision: 0.9698098412076064
43
+ - Recall: 0.9495201535508637
44
+ - F1: 0.9595577538551062
45
+ - Number: 5210
46
+ - Overall
47
+ - Precision: 0.9107
48
+ - Recall: 0.9360
49
+ - F1: 0.9232
50
+ - Accuracy: 0.9909
51
 
52
  ## Model description
53
 
 
76
 
77
  ### Training results
78
 
79
+ | Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:---------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|
81
+ | 0.1092 | 1.0 | 5795 | 0.0987 | 0.9125 | 0.9328 | 0.9225 | 5955 | 0.8003 | 0.9091 | 0.8512 | 5061 | 0.9143 | 0.9278 | 0.9210 | 3449 | 0.9714 | 0.9395 | 0.9552 | 5210 | 0.8957 | 0.9276 | 0.9114 | 0.9890 |
82
+ | 0.0723 | 2.0 | 11590 | 0.0878 | 0.9249 | 0.9394 | 0.9321 | 5955 | 0.8305 | 0.9186 | 0.8723 | 5061 | 0.9283 | 0.9353 | 0.9318 | 3449 | 0.9698 | 0.9495 | 0.9596 | 5210 | 0.9107 | 0.9360 | 0.9232 | 0.9909 |
83
 
84
+ * All values in the above chart arerounded to nearest ten-thousandth.
85
 
86
  ### Framework versions
87