DunnBC22 commited on
Commit
c1cbd37
·
1 Parent(s): 2c198db

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ - recall
8
+ - precision
9
+ model-index:
10
+ - name: ibert-roberta-base-Abusive_Or_Threatening_Speech
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # ibert-roberta-base-Abusive_Or_Threatening_Speech
18
+
19
+ This model is a fine-tuned version of [kssteven/ibert-roberta-base](https://huggingface.co/kssteven/ibert-roberta-base) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0802
22
+ - Accuracy: 0.9741
23
+ - F1: 0.7773
24
+ - Recall: 0.8610
25
+ - Precision: 0.7084
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 64
46
+ - eval_batch_size: 64
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 1
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
56
+ | 0.0771 | 1.0 | 1828 | 0.0802 | 0.9741 | 0.7773 | 0.8610 | 0.7084 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.28.1
62
+ - Pytorch 2.0.0
63
+ - Datasets 2.8.0
64
+ - Tokenizers 0.12.1