DunnBC22 commited on
Commit
5d3551c
·
1 Parent(s): e1415f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -7
README.md CHANGED
@@ -8,10 +8,6 @@ model-index:
8
  - name: distilbert-base-uncased-Financial_Sentiment_Analysis
9
  results: []
10
  ---
11
-
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
  # distilbert-base-uncased-Finanacial_Sentiment_Analysis
16
 
17
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
@@ -22,7 +18,9 @@ It achieves the following results on the evaluation set:
22
 
23
  ## Model description
24
 
25
- More information needed
 
 
26
 
27
  ## Intended uses & limitations
28
 
@@ -30,7 +28,10 @@ More information needed
30
 
31
  ## Training and evaluation data
32
 
33
- More information needed
 
 
 
34
 
35
  ## Training procedure
36
 
@@ -55,10 +56,14 @@ The following hyperparameters were used during training:
55
  | 0.2049 | 4.0 | 536 | 0.3066 | 0.8463 | 0.8506 |
56
  | 0.1802 | 5.0 | 670 | 0.3079 | 0.8529 | 0.8564 |
57
 
58
-
59
  ### Framework versions
60
 
61
  - Transformers 4.22.1
62
  - Pytorch 1.12.1
63
  - Datasets 2.4.0
64
  - Tokenizers 0.12.1
 
 
 
 
 
 
8
  - name: distilbert-base-uncased-Financial_Sentiment_Analysis
9
  results: []
10
  ---
 
 
 
 
11
  # distilbert-base-uncased-Finanacial_Sentiment_Analysis
12
 
13
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
 
18
 
19
  ## Model description
20
 
21
+ This project classifies input samples as one of the following: negative, neutral, or positive.
22
+
23
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Sentiment%20Analysis/Financial%20Sentiment%20Analysis/Financial%20Sentiment%20Analysis-Updated%20Version.ipynb
24
 
25
  ## Intended uses & limitations
26
 
 
28
 
29
  ## Training and evaluation data
30
 
31
+ There were two datasets that I concatenated:
32
+ - https://www.kaggle.com/datasets/sbhatti/financial-sentiment-analysis
33
+ - https://www.kaggle.com/datasets/ankurzing/sentiment-analysis-for-financial-news
34
+
35
 
36
  ## Training procedure
37
 
 
56
  | 0.2049 | 4.0 | 536 | 0.3066 | 0.8463 | 0.8506 |
57
  | 0.1802 | 5.0 | 670 | 0.3079 | 0.8529 | 0.8564 |
58
 
 
59
  ### Framework versions
60
 
61
  - Transformers 4.22.1
62
  - Pytorch 1.12.1
63
  - Datasets 2.4.0
64
  - Tokenizers 0.12.1
65
+
66
+ ### Similar Models
67
+ You can find two models similar to this one that I completed at these links:
68
+ - https://huggingface.co/DunnBC22/fnet-large-Financial_Sentiment_Analysis_v3
69
+ - https://huggingface.co/DunnBC22/fnet-base-Financial_Sentiment_Analysis