DunnBC22 commited on
Commit
7330f4f
·
1 Parent(s): cc1c2fa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -5,6 +5,7 @@ tags:
5
  - generated_from_trainer
6
  - NLP Regression
7
  - Regression
 
8
  model-index:
9
  - name: bert-base-uncased-Regression-Edmunds_Car_Reviews
10
  results: []
@@ -17,7 +18,8 @@ metrics:
17
 
18
  # bert-base-uncased-Regression-Edmunds_Car_Reviews
19
 
20
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
 
21
  It achieves the following results on the evaluation set:
22
  - Loss: 0.2324
23
  - Mse: 0.2324
@@ -26,15 +28,15 @@ It achieves the following results on the evaluation set:
26
 
27
  ## Model description
28
 
29
- More information needed
30
 
31
  ## Intended uses & limitations
32
 
33
- More information needed
34
 
35
  ## Training and evaluation data
36
 
37
- More information needed
38
 
39
  ## Training procedure
40
 
 
5
  - generated_from_trainer
6
  - NLP Regression
7
  - Regression
8
+ - Edmunds Car Reviews
9
  model-index:
10
  - name: bert-base-uncased-Regression-Edmunds_Car_Reviews
11
  results: []
 
18
 
19
  # bert-base-uncased-Regression-Edmunds_Car_Reviews
20
 
21
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased).
22
+
23
  It achieves the following results on the evaluation set:
24
  - Loss: 0.2324
25
  - Mse: 0.2324
 
28
 
29
  ## Model description
30
 
31
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/NLP%20Regression/Edmunds%20Car%20Reviews%20(BERT-Base)/Edmunds_Consumer_car_Regression_All_Manufacturers_Bert_Base.ipynb
32
 
33
  ## Intended uses & limitations
34
 
35
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
36
 
37
  ## Training and evaluation data
38
 
39
+ Dataset Source: https://www.kaggle.com/datasets/ankkur13/edmundsconsumer-car-ratings-and-reviews
40
 
41
  ## Training procedure
42