DunnBC22 commited on
Commit
3aaf5cc
·
1 Parent(s): c81e524

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - token-classification
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: bert-base-cased-finetuned-WikiNeural
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # bert-base-cased-finetuned-WikiNeural
15
+
16
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0881
19
+ - Loc: {'precision': 0.9282034236330398, 'recall': 0.9378673383711167, 'f1': 0.9330103575008353, 'number': 5955}
20
+ - Misc: {'precision': 0.8336608897623727, 'recall': 0.9219521833629718, 'f1': 0.8755864139613436, 'number': 5061}
21
+ - Org: {'precision': 0.9351851851851852, 'recall': 0.9370832125253696, 'f1': 0.9361332367849385, 'number': 3449}
22
+ - Per: {'precision': 0.9728037566034045, 'recall': 0.9543186180422265, 'f1': 0.9634725317314214, 'number': 5210}
23
+ - Overall Precision: 0.9145
24
+ - Overall Recall: 0.9380
25
+ - Overall F1: 0.9261
26
+ - Overall Accuracy: 0.9912
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 2
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 0.1 | 1.0 | 5795 | 0.0943 | {'precision': 0.9075480846937126, 'recall': 0.9429051217464316, 'f1': 0.9248888156811068, 'number': 5955} | {'precision': 0.8320190720704199, 'recall': 0.8964631495751828, 'f1': 0.8630397565151225, 'number': 5061} | {'precision': 0.9151428571428571, 'recall': 0.9286749782545666, 'f1': 0.9218592603252267, 'number': 3449} | {'precision': 0.9683036587751908, 'recall': 0.9499040307101727, 'f1': 0.9590155992636372, 'number': 5210} | 0.9039 | 0.9303 | 0.9169 | 0.9901 |
58
+ | 0.0578 | 2.0 | 11590 | 0.0881 | {'precision': 0.9282034236330398, 'recall': 0.9378673383711167, 'f1': 0.9330103575008353, 'number': 5955} | {'precision': 0.8336608897623727, 'recall': 0.9219521833629718, 'f1': 0.8755864139613436, 'number': 5061} | {'precision': 0.9351851851851852, 'recall': 0.9370832125253696, 'f1': 0.9361332367849385, 'number': 3449} | {'precision': 0.9728037566034045, 'recall': 0.9543186180422265, 'f1': 0.9634725317314214, 'number': 5210} | 0.9145 | 0.9380 | 0.9261 | 0.9912 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.28.1
64
+ - Pytorch 2.0.0
65
+ - Datasets 2.11.0
66
+ - Tokenizers 0.13.3