jaskaran Singh
commited on
Commit
·
22a7887
1
Parent(s):
92172e2
init
Browse files- .gitattributes +4 -0
- LICENSE +201 -0
- README.md +1 -3
- maha_tts/__init__.py +1 -0
- maha_tts/__pycache__/__init__.cpython-311.pyc +0 -0
- maha_tts/__pycache__/config.cpython-311.pyc +0 -0
- maha_tts/__pycache__/inference.cpython-311.pyc +0 -0
- maha_tts/config.py +23 -0
- maha_tts/dataloaders/__init__.py +0 -0
- maha_tts/inference.py +254 -0
- maha_tts/models/__init__.py +0 -0
- maha_tts/models/__pycache__/__init__.cpython-311.pyc +0 -0
- maha_tts/models/__pycache__/autoregressive.cpython-311.pyc +0 -0
- maha_tts/models/__pycache__/diff_model.cpython-311.pyc +0 -0
- maha_tts/models/__pycache__/modules.cpython-311.pyc +0 -0
- maha_tts/models/__pycache__/vocoder.cpython-311.pyc +0 -0
- maha_tts/models/autoregressive.py +135 -0
- maha_tts/models/diff_model.py +303 -0
- maha_tts/models/modules.py +406 -0
- maha_tts/models/vocoder.py +342 -0
- maha_tts/pretrained_models/.DS_Store +0 -0
- maha_tts/pretrained_models/hifigan/config.json +3 -0
- maha_tts/pretrained_models/hifigan/g_02500000 +3 -0
- maha_tts/pretrained_models/smolie/S2A/s2a_latest.pt +3 -0
- maha_tts/pretrained_models/smolie/T2S/t2s_best.pt +3 -0
- maha_tts/text/__init__.py +0 -0
- maha_tts/text/__pycache__/__init__.cpython-311.pyc +0 -0
- maha_tts/text/__pycache__/cleaners.cpython-311.pyc +0 -0
- maha_tts/text/__pycache__/symbols.cpython-311.pyc +0 -0
- maha_tts/text/cleaners.py +143 -0
- maha_tts/text/symbols.py +28 -0
- maha_tts/utils/__init__.py +0 -0
- maha_tts/utils/__pycache__/__init__.cpython-311.pyc +0 -0
- maha_tts/utils/__pycache__/audio.cpython-311.pyc +0 -0
- maha_tts/utils/__pycache__/diffusion.cpython-311.pyc +0 -0
- maha_tts/utils/__pycache__/stft.cpython-311.pyc +0 -0
- maha_tts/utils/audio.py +109 -0
- maha_tts/utils/diffusion.py +1283 -0
- maha_tts/utils/stft.py +109 -0
- ref_clips/2971_4275_000003_000007.wav +0 -0
- ref_clips/2971_4275_000020_000001.wav +0 -0
- ref_clips/2971_4275_000023_000010.wav +0 -0
- ref_clips/2971_4275_000049_000000.wav +0 -0
- ref_clips/2971_4275_000049_000004.wav +0 -0
- ref_clips/2971_4275_000050_000000.wav +0 -0
- tts.py +14 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
maha_tts/pretrained_models/smolie/T2S/t2s_best.pt filter=lfs diff=lfs merge=lfs -text
|
37 |
+
maha_tts/pretrained_models/smolie/S2A/s2a_latest.pt filter=lfs diff=lfs merge=lfs -text
|
38 |
+
maha_tts/pretrained_models/hifigan/config.json filter=lfs diff=lfs merge=lfs -text
|
39 |
+
maha_tts/pretrained_models/hifigan/g_02500000 filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,3 +1 @@
|
|
1 |
-
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
1 |
+
# MahaTTS
|
|
|
|
maha_tts/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .inference import load_models,load_diffuser,infer_tts
|
maha_tts/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (285 Bytes). View file
|
|
maha_tts/__pycache__/config.cpython-311.pyc
ADDED
Binary file (817 Bytes). View file
|
|
maha_tts/__pycache__/inference.cpython-311.pyc
ADDED
Binary file (17.1 kB). View file
|
|
maha_tts/config.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
class config:
|
3 |
+
|
4 |
+
semantic_model_centroids = 10000 + 1
|
5 |
+
seed_value = 3407
|
6 |
+
|
7 |
+
# Text to Semantic
|
8 |
+
t2s_position = 2048
|
9 |
+
|
10 |
+
# Semantic to acoustic
|
11 |
+
sa_timesteps_max = 1000
|
12 |
+
|
13 |
+
#Acoustic Properties
|
14 |
+
CLIP_LENGTH = 500
|
15 |
+
MAX_WAV_VALUE=32768.0
|
16 |
+
filter_length=1024
|
17 |
+
hop_length=256 #256
|
18 |
+
window = 'hann'
|
19 |
+
win_length=1024
|
20 |
+
n_mel_channels=80
|
21 |
+
sampling_rate=22050
|
22 |
+
mel_fmin=0.0
|
23 |
+
mel_fmax=8000.0
|
maha_tts/dataloaders/__init__.py
ADDED
File without changes
|
maha_tts/inference.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch,glob,os
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from librosa.filters import mel as librosa_mel_fn
|
6 |
+
from scipy.io.wavfile import write
|
7 |
+
from scipy.special import softmax
|
8 |
+
from maha_tts.models.diff_model import load_diff_model
|
9 |
+
from maha_tts.models.autoregressive import load_TS_model
|
10 |
+
from maha_tts.models.vocoder import load_vocoder_model,infer_wav
|
11 |
+
from maha_tts.utils.audio import denormalize_tacotron_mel,normalize_tacotron_mel,load_wav_to_torch,dynamic_range_compression
|
12 |
+
from maha_tts.utils.stft import STFT
|
13 |
+
from maha_tts.utils.diffusion import SpacedDiffusion,get_named_beta_schedule,space_timesteps
|
14 |
+
from maha_tts.text.symbols import labels,text_labels,code_labels,text_enc,text_dec,code_enc,code_dec
|
15 |
+
from maha_tts.text.cleaners import english_cleaners
|
16 |
+
from maha_tts.config import config
|
17 |
+
|
18 |
+
stft_fn = STFT(config.filter_length, config.hop_length, config.win_length)
|
19 |
+
|
20 |
+
mel_basis = librosa_mel_fn(
|
21 |
+
sr=config.sampling_rate, n_fft=config.filter_length, n_mels=config.n_mel_channels, fmin=config.mel_fmin, fmax=config.mel_fmax)
|
22 |
+
|
23 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
24 |
+
|
25 |
+
model_dirs= {
|
26 |
+
'Smolie':'asdf',
|
27 |
+
'hifigan':'asdf'
|
28 |
+
}
|
29 |
+
|
30 |
+
def download_model(name):
|
31 |
+
pass
|
32 |
+
|
33 |
+
|
34 |
+
def load_models(name,device=torch.device('cpu')):
|
35 |
+
'''
|
36 |
+
Load pre-trained models for different components of a text-to-speech system.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
device (str): The target device for model loading (e.g., 'cpu' or 'cuda').
|
40 |
+
checkpoint_diff (str): File path to the pre-trained model checkpoint for the diffusion model.
|
41 |
+
checkpoint_ts (str): File path to the pre-trained model checkpoint for the text-to-semantic model.
|
42 |
+
checkpoint_voco (str): File path to the pre-trained model checkpoint for the vocoder model.
|
43 |
+
voco_config_path (str): File path to the configuration file for the vocoder model.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
diff_model (object): Loaded diffusion model for semantic-to-acoustic tokens.
|
47 |
+
ts_model (object): Loaded text-to-semantic model for converting text-to-semantic tokens.
|
48 |
+
vocoder (object): Loaded vocoder model for generating waveform from acoustic tokens.
|
49 |
+
diffuser (object): Configured diffuser object for use in the diffusion model.
|
50 |
+
'''
|
51 |
+
|
52 |
+
assert name in model_dirs, "no model name "+name
|
53 |
+
|
54 |
+
checkpoint_diff = 'maha_tts/pretrained_models/'+str(name)+'/S2A/s2a_latest.pt'
|
55 |
+
checkpoint_ts = 'maha_tts/pretrained_models/'+str(name)+'/T2S/t2s_best.pt'
|
56 |
+
checkpoint_voco = 'maha_tts/pretrained_models/hifigan/g_02500000'
|
57 |
+
voco_config_path = 'maha_tts/pretrained_models/hifigan/config.json'
|
58 |
+
|
59 |
+
# for i in [checkpoint_diff,checkpoint_ts,checkpoint_voco,voco_config_path]:
|
60 |
+
if not os.path.exists(checkpoint_diff) or not os.path.exists(checkpoint_ts):
|
61 |
+
download_model(name)
|
62 |
+
|
63 |
+
if not os.path.exists(checkpoint_voco) or not os.path.exists(voco_config_path):
|
64 |
+
download_model('hifigan')
|
65 |
+
|
66 |
+
diff_model = load_diff_model(checkpoint_diff,device)
|
67 |
+
ts_model = load_TS_model(checkpoint_ts,device)
|
68 |
+
vocoder = load_vocoder_model(voco_config_path,checkpoint_voco,device)
|
69 |
+
diffuser = load_diffuser()
|
70 |
+
|
71 |
+
return diff_model,ts_model,vocoder,diffuser
|
72 |
+
|
73 |
+
def infer_mel(model,timeshape,code,ref_mel,diffuser,temperature=0.1):
|
74 |
+
device = next(model.parameters()).device
|
75 |
+
code = code.to(device)
|
76 |
+
output_shape = (1,80,timeshape)
|
77 |
+
noise = torch.randn(output_shape, device=code.device) * temperature
|
78 |
+
mel = diffuser.p_sample_loop(model, output_shape, noise=noise,
|
79 |
+
model_kwargs={'code_emb': code,'ref_clips':ref_mel},
|
80 |
+
progress=True)
|
81 |
+
return denormalize_tacotron_mel(mel)
|
82 |
+
|
83 |
+
def generate_semantic_tokens(
|
84 |
+
text,
|
85 |
+
model,
|
86 |
+
ref_mels,
|
87 |
+
temp = 0.7,
|
88 |
+
top_p= None,
|
89 |
+
top_k= None,
|
90 |
+
n_tot_steps = 1000,
|
91 |
+
device = None
|
92 |
+
):
|
93 |
+
semb = []
|
94 |
+
with torch.no_grad():
|
95 |
+
for n in range(n_tot_steps):
|
96 |
+
x = get_inputs(text,semb,ref_mels,device)
|
97 |
+
_,result = model(**x)
|
98 |
+
relevant_logits = result[0,:,-1]
|
99 |
+
if top_p is not None:
|
100 |
+
# faster to convert to numpy
|
101 |
+
original_device = relevant_logits.device
|
102 |
+
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
|
103 |
+
sorted_indices = np.argsort(relevant_logits)[::-1]
|
104 |
+
sorted_logits = relevant_logits[sorted_indices]
|
105 |
+
cumulative_probs = np.cumsum(softmax(sorted_logits))
|
106 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
107 |
+
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
|
108 |
+
sorted_indices_to_remove[0] = False
|
109 |
+
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
|
110 |
+
relevant_logits = torch.from_numpy(relevant_logits)
|
111 |
+
relevant_logits = relevant_logits.to(original_device)
|
112 |
+
|
113 |
+
if top_k is not None:
|
114 |
+
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
|
115 |
+
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
|
116 |
+
|
117 |
+
probs = F.softmax(relevant_logits / temp, dim=-1)
|
118 |
+
item_next = torch.multinomial(probs, num_samples=1).to(torch.int32)
|
119 |
+
semb.append(str(code_dec[item_next.item()]))
|
120 |
+
if semb[-1] == '<EST>' or semb[-1] == '<PAD>':
|
121 |
+
break
|
122 |
+
|
123 |
+
del relevant_logits, probs, item_next
|
124 |
+
|
125 |
+
semb = torch.tensor([int(i) for i in semb[:-1]])
|
126 |
+
return semb,result
|
127 |
+
|
128 |
+
def get_inputs(text,semb=[],ref_mels=[],device=torch.device('cpu')):
|
129 |
+
text = text.lower()
|
130 |
+
text_ids=[text_enc['<S>']]+[text_enc[i] for i in text.strip()]+[text_enc['<E>']]
|
131 |
+
semb_ids=[code_enc['<SST>']]+[code_enc[i] for i in semb]#+[tok_enc['<EST>']]
|
132 |
+
|
133 |
+
input_ids = text_ids+semb_ids
|
134 |
+
# pad_length = config.t2s_position-(len(text_ids)+len(semb_ids))
|
135 |
+
|
136 |
+
token_type_ids = [0]*len(text_ids)+[1]*len(semb_ids)#+[0]*pad_length
|
137 |
+
positional_ids = [i for i in range(len(text_ids))]+[i for i in range(len(semb_ids))]#+[0]*pad_length
|
138 |
+
# labels = [-100]*len(text_ids)+semb_ids+[-100]*pad_length
|
139 |
+
attention_mask = [1]*len(input_ids)#+[0]*pad_length
|
140 |
+
# input_ids += [tok_enc['<PAD>']]*pad_length
|
141 |
+
return {'text_ids':torch.tensor(text_ids).unsqueeze(0).to(device),'codes_ids':torch.tensor(semb_ids).unsqueeze(0).to(device),'ref_clips':normalize_tacotron_mel(ref_mels).to(device)}
|
142 |
+
|
143 |
+
def get_ref_mels(ref_clips):
|
144 |
+
ref_mels = []
|
145 |
+
for i in ref_clips:
|
146 |
+
ref_mels.append(get_mel(i)[0][:,:500])
|
147 |
+
|
148 |
+
ref_mels_padded = (torch.randn((len(ref_mels), 80, 500)))*1e-8
|
149 |
+
for i,mel in enumerate(ref_mels):
|
150 |
+
ref_mels_padded[i, :, :mel.size(1)] = mel
|
151 |
+
return ref_mels_padded.unsqueeze(0)
|
152 |
+
|
153 |
+
def get_mel(filepath):
|
154 |
+
audio, sampling_rate = load_wav_to_torch(filepath)
|
155 |
+
audio_norm = audio / config.MAX_WAV_VALUE
|
156 |
+
audio_norm = audio_norm.unsqueeze(0)
|
157 |
+
y = torch.autograd.Variable(audio_norm, requires_grad=False)
|
158 |
+
|
159 |
+
assert(torch.min(y.data) >= -1)
|
160 |
+
assert(torch.max(y.data) <= 1)
|
161 |
+
magnitudes, phases = stft_fn.transform(y)
|
162 |
+
magnitudes = magnitudes.data
|
163 |
+
mel_output = torch.matmul(mel_basis, magnitudes)
|
164 |
+
mel_output = dynamic_range_compression(mel_output)
|
165 |
+
melspec = torch.squeeze(mel_output, 0)
|
166 |
+
energy = torch.norm(magnitudes, dim=1).squeeze(0)
|
167 |
+
return melspec,list(energy)
|
168 |
+
|
169 |
+
def infer_tts(text,ref_clips,diffuser,diff_model,ts_model,vocoder):
|
170 |
+
'''
|
171 |
+
Generate audio from the given text using a text-to-speech (TTS) pipeline.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
text (str): The input text to be synthesized into speech.
|
175 |
+
ref_clips (list): A list of paths to reference audio clips, preferably more than 3 clips.
|
176 |
+
diffuser (object): A diffusion object used for denoising and guidance in the diffusion model. It should be obtained using load_diffuser.
|
177 |
+
diff_model: diffusion model for semantic-to-acoustic tokens.
|
178 |
+
ts_model: text-to-semantic model for converting text-to-semantic tokens.
|
179 |
+
vocoder: vocoder model for generating waveform from acoustic tokens.
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
audio (numpy.ndarray): Generated audio waveform.
|
183 |
+
sampling_rate (int): Sampling rate of the generated audio.
|
184 |
+
|
185 |
+
Description:
|
186 |
+
The `infer_tts` function takes input text and reference audio clips, and processes them through a TTS pipeline.
|
187 |
+
It first performs text preprocessing and generates semantic tokens using the specified text synthesis model.
|
188 |
+
Then, it infers mel-spectrogram features using the diffusion model and the provided diffuser.
|
189 |
+
Finally, it generates audio from the mel-spectrogram using the vocoder.
|
190 |
+
|
191 |
+
Note: The function requires properly configured diff_model, ts_model, and vocoder objects for successful TTS.
|
192 |
+
|
193 |
+
Example usage:
|
194 |
+
audio, sampling_rate = infer_tts("Hello, how are you?", ref_clips, diffuser, diff_model, ts_model, vocoder)
|
195 |
+
'''
|
196 |
+
text = english_cleaners(text)
|
197 |
+
ref_mels = get_ref_mels(ref_clips)
|
198 |
+
with torch.no_grad():
|
199 |
+
sem_tok,_ = generate_semantic_tokens(
|
200 |
+
text,
|
201 |
+
ts_model,
|
202 |
+
ref_mels,
|
203 |
+
temp = 0.7,
|
204 |
+
top_p= 0.8,
|
205 |
+
top_k= 5,
|
206 |
+
n_tot_steps = 1000,
|
207 |
+
device = None
|
208 |
+
)
|
209 |
+
mel = infer_mel(diff_model,int(((sem_tok.shape[-1] * 320 / 16000) * 22050/256)+1),sem_tok.unsqueeze(0) + 1,
|
210 |
+
ref_mels,diffuser,temperature=1.0)
|
211 |
+
|
212 |
+
audio = infer_wav(mel,vocoder)
|
213 |
+
|
214 |
+
return audio,config.sampling_rate
|
215 |
+
|
216 |
+
def load_diffuser(timesteps = 100, gudiance=3):
|
217 |
+
'''
|
218 |
+
Load and configure a diffuser for denoising and guidance in the diffusion model.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
timesteps (int): Number of denoising steps out of 1000. Default is 100.
|
222 |
+
guidance (int): Conditioning-free guidance parameter. Default is 3.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
diffuser (object): Configured diffuser object for use in the diffusion model.
|
226 |
+
|
227 |
+
Description:
|
228 |
+
The `load_diffuser` function initializes a diffuser with specific settings for denoising and guidance.
|
229 |
+
'''
|
230 |
+
betas = get_named_beta_schedule('cosine',config.sa_timesteps_max)
|
231 |
+
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(1000, [timesteps]), model_mean_type='epsilon',
|
232 |
+
model_var_type='learned_range', loss_type='rescaled_mse', betas=betas,
|
233 |
+
conditioning_free=True, conditioning_free_k=gudiance)
|
234 |
+
diffuser.training=False
|
235 |
+
return diffuser
|
236 |
+
|
237 |
+
if __name__ == '__main__':
|
238 |
+
|
239 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
240 |
+
print(device)
|
241 |
+
text = 'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition.'
|
242 |
+
ref_clips = glob.glob('/Users/jaskaransingh/Desktop/maha_tts/ref_clips/*.wav')
|
243 |
+
|
244 |
+
checkpoint_diff = 'maha_tts/pretrained_models/S2A/s2a_latest.pt'
|
245 |
+
checkpoint_ts = 'maha_tts/pretrained_models/T2S/t2s_best.pt'
|
246 |
+
checkpoint_voco = 'maha_tts/pretrained_models/hifigan/g_02500000'
|
247 |
+
voco_config_path = 'maha_tts/pretrained_models/hifigan/config.json'
|
248 |
+
|
249 |
+
diffuser = load_diffuser()
|
250 |
+
diff_model,ts_model,vocoder = load_models(device,checkpoint_diff,checkpoint_ts,checkpoint_voco,voco_config_path)
|
251 |
+
audio,sr = infer_tts(text,ref_clips,diffuser,diff_model,ts_model,vocoder)
|
252 |
+
write('test.wav',sr,audio)
|
253 |
+
|
254 |
+
|
maha_tts/models/__init__.py
ADDED
File without changes
|
maha_tts/models/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (177 Bytes). View file
|
|
maha_tts/models/__pycache__/autoregressive.cpython-311.pyc
ADDED
Binary file (9.89 kB). View file
|
|
maha_tts/models/__pycache__/diff_model.cpython-311.pyc
ADDED
Binary file (18.9 kB). View file
|
|
maha_tts/models/__pycache__/modules.cpython-311.pyc
ADDED
Binary file (28.6 kB). View file
|
|
maha_tts/models/__pycache__/vocoder.cpython-311.pyc
ADDED
Binary file (22.8 kB). View file
|
|
maha_tts/models/autoregressive.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Inspiration taken from https://github.com/neonbjb/tortoise-tts/blob/main/tortoise/models/autoregressive.py
|
3 |
+
'''
|
4 |
+
import os,sys
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.optim as optim
|
9 |
+
import functools
|
10 |
+
|
11 |
+
from typing import Any
|
12 |
+
from torch.utils.data import Dataset,DataLoader
|
13 |
+
from transformers import GPT2Tokenizer,GPT2Config, GPT2Model, GPT2LMHeadModel
|
14 |
+
from tqdm import tqdm
|
15 |
+
from maha_tts.config import config
|
16 |
+
from maha_tts.text.symbols import labels,code_labels,text_labels
|
17 |
+
from maha_tts.models.modules import GST
|
18 |
+
|
19 |
+
def null_position_embeddings(range, dim):
|
20 |
+
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
21 |
+
|
22 |
+
class TS_model(nn.Module):
|
23 |
+
def __init__(self,n_embed = 512, n_layer = 16, n_head = 8):
|
24 |
+
super(TS_model,self).__init__()
|
25 |
+
|
26 |
+
self.vocab_size=len(labels)
|
27 |
+
self.n_positions=config.t2s_position
|
28 |
+
self.n_embed=n_embed
|
29 |
+
self.n_layer=n_layer
|
30 |
+
self.n_head=n_head
|
31 |
+
|
32 |
+
self.config = GPT2Config(vocab_size=self.vocab_size,n_positions=self.n_positions,n_embd=self.n_embed,n_layer=self.n_layer,n_head=self.n_head)
|
33 |
+
self.gpt = GPT2Model(self.config)
|
34 |
+
del self.gpt.wpe
|
35 |
+
self.gpt.wpe = functools.partial(null_position_embeddings, dim=self.n_embed)
|
36 |
+
# Built-in token embeddings are unused.
|
37 |
+
del self.gpt.wte
|
38 |
+
self.GST = GST(model_channels=self.n_embed,num_heads=self.n_head,in_channels=config.n_mel_channels,k=1)
|
39 |
+
self.text_head = nn.Linear(self.n_embed,len(text_labels))
|
40 |
+
self.code_head = nn.Linear(self.n_embed,len(code_labels))
|
41 |
+
|
42 |
+
self.text_positional_embed = LearnedPositionEmbeddings(self.n_positions,self.n_embed)
|
43 |
+
self.code_positional_embed = LearnedPositionEmbeddings(self.n_positions,self.n_embed)
|
44 |
+
|
45 |
+
self.text_embed = nn.Embedding(len(text_labels),self.n_embed)
|
46 |
+
self.code_embed = nn.Embedding(len(code_labels),self.n_embed)
|
47 |
+
self.final_norm = nn.LayerNorm(self.n_embed)
|
48 |
+
|
49 |
+
def get_speaker_latent(self, ref_mels):
|
50 |
+
ref_mels = ref_mels.unsqueeze(1) if len(
|
51 |
+
ref_mels.shape) == 3 else ref_mels
|
52 |
+
|
53 |
+
conds = []
|
54 |
+
for j in range(ref_mels.shape[1]):
|
55 |
+
conds.append(self.GST(ref_mels[:, j,:,:]))
|
56 |
+
|
57 |
+
conds = torch.cat(conds, dim=-1)
|
58 |
+
conds = conds.mean(dim=-1)
|
59 |
+
|
60 |
+
return conds.unsqueeze(1)
|
61 |
+
|
62 |
+
def forward(self,text_ids,codes_ids = None,speaker_embed=None,ref_clips=None,return_loss = False):
|
63 |
+
assert speaker_embed is not None or ref_clips is not None
|
64 |
+
text_embed = self.text_embed(text_ids)
|
65 |
+
text_embed += self.text_positional_embed(text_embed)
|
66 |
+
|
67 |
+
code_embed = None
|
68 |
+
code_probs= None
|
69 |
+
|
70 |
+
if codes_ids is not None:
|
71 |
+
code_embed = self.code_embed(codes_ids)
|
72 |
+
code_embed+= self.code_positional_embed(code_embed)
|
73 |
+
|
74 |
+
if ref_clips is not None:
|
75 |
+
speaker_embed = self.get_speaker_latent(ref_clips)
|
76 |
+
|
77 |
+
text_embed,code_embed = self.get_logits(speaker_embed=speaker_embed,text_embed=text_embed,code_embed=code_embed)
|
78 |
+
|
79 |
+
text_probs = self.text_head(text_embed).permute(0,2,1)
|
80 |
+
|
81 |
+
if codes_ids is not None:
|
82 |
+
code_probs = self.code_head(code_embed).permute(0,2,1)
|
83 |
+
|
84 |
+
if return_loss:
|
85 |
+
loss_text = F.cross_entropy(text_probs[:,:,:-1], text_ids[:,1:].long(), reduce=False)
|
86 |
+
loss_mel = F.cross_entropy(code_probs[:,:,:-1], codes_ids[:,1:].long(), reduce=False)
|
87 |
+
return loss_text,loss_mel,code_probs
|
88 |
+
|
89 |
+
return text_probs,code_probs
|
90 |
+
|
91 |
+
|
92 |
+
def get_logits(self,speaker_embed,text_embed,code_embed=None):
|
93 |
+
|
94 |
+
if code_embed is not None:
|
95 |
+
embed = torch.cat([speaker_embed,text_embed,code_embed],dim=1)
|
96 |
+
else:
|
97 |
+
embed = torch.cat([speaker_embed,text_embed],dim=1)
|
98 |
+
|
99 |
+
gpt_output = self.gpt(inputs_embeds=embed, return_dict=True)
|
100 |
+
enc = gpt_output.last_hidden_state[:, 1:]
|
101 |
+
enc = self.final_norm(enc)
|
102 |
+
if code_embed is not None:
|
103 |
+
return enc[:,:text_embed.shape[1]],enc[:,-code_embed.shape[1]:]
|
104 |
+
|
105 |
+
return enc[:,:text_embed.shape[1]],None
|
106 |
+
|
107 |
+
class LearnedPositionEmbeddings(nn.Module):
|
108 |
+
def __init__(self, seq_len, model_dim, init=.02):
|
109 |
+
super().__init__()
|
110 |
+
self.emb = nn.Embedding(seq_len, model_dim)
|
111 |
+
# Initializing this way is standard for GPT-2
|
112 |
+
self.emb.weight.data.normal_(mean=0.0, std=init)
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
sl = x.shape[1]
|
116 |
+
return self.emb(torch.arange(0, sl, device=x.device))
|
117 |
+
|
118 |
+
def get_fixed_embedding(self, ind, dev):
|
119 |
+
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
|
120 |
+
|
121 |
+
def load_TS_model(checkpoint,device):
|
122 |
+
sem_model= TS_model(n_embed = 512, n_layer = 16, n_head = 8)
|
123 |
+
sem_model.load_state_dict(torch.load(checkpoint,map_location=torch.device('cpu')),strict=False)
|
124 |
+
sem_model.eval().to(device)
|
125 |
+
|
126 |
+
return sem_model
|
127 |
+
|
128 |
+
if __name__ == '__main__':
|
129 |
+
model=TS_model(n_embed = 256, n_layer = 6, n_head = 4)
|
130 |
+
|
131 |
+
text_ids = torch.randint(0,100,(5,20))
|
132 |
+
code_ids = torch.randint(0,100,(5,200))
|
133 |
+
speaker_embed = torch.randn((5,1,256))
|
134 |
+
|
135 |
+
output=model(text_ids=text_ids,speaker_embed=speaker_embed,codes_ids=code_ids,return_loss=True)
|
maha_tts/models/diff_model.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
inspiration taken from https://github.com/neonbjb/tortoise-tts/blob/main/tortoise/models/diffusion_decoder.py
|
3 |
+
'''
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import math
|
9 |
+
|
10 |
+
from maha_tts.config import config
|
11 |
+
from torch import autocast
|
12 |
+
from maha_tts.models.modules import QuartzNetBlock,AttentionBlock,mySequential,normalization,SCBD,SqueezeExcite,GST
|
13 |
+
|
14 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
15 |
+
"""
|
16 |
+
Create sinusoidal timestep embeddings.
|
17 |
+
|
18 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
19 |
+
These may be fractional.
|
20 |
+
:param dim: the dimension of the output.
|
21 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
22 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
23 |
+
"""
|
24 |
+
half = dim // 2
|
25 |
+
freqs = torch.exp(
|
26 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
27 |
+
).to(device=timesteps.device)
|
28 |
+
args = timesteps[:, None].float() * freqs[None]
|
29 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
30 |
+
if dim % 2:
|
31 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
32 |
+
return embedding
|
33 |
+
|
34 |
+
class TimestepBlock(nn.Module):
|
35 |
+
def forward(self, x, emb):
|
36 |
+
"""
|
37 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
38 |
+
"""
|
39 |
+
|
40 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
41 |
+
def forward(self, x, emb):
|
42 |
+
for layer in self:
|
43 |
+
if isinstance(layer, TimestepBlock):
|
44 |
+
x = layer(x, emb)
|
45 |
+
else:
|
46 |
+
x = layer(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
class QuartzNetBlock(TimestepBlock):
|
50 |
+
'''Similar to Resnet block with Batchnorm and dropout, and using Separable conv in the middle.
|
51 |
+
if its the last layer,set se = False and separable = False, and use a projection layer on top of this.
|
52 |
+
'''
|
53 |
+
def __init__(self,nin,nout,emb_channels,kernel_size=3,dropout=0.1,R=1,se=True,ratio=8,separable=False,bias=True,use_scale_shift_norm=True):
|
54 |
+
super(QuartzNetBlock,self).__init__()
|
55 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
56 |
+
self.se=se
|
57 |
+
self.in_layers = mySequential(
|
58 |
+
nn.Conv1d(nin,nout,kernel_size=1,padding='same',bias=bias),
|
59 |
+
normalization(nout) #nn.BatchNorm1d(nout,eps)
|
60 |
+
)
|
61 |
+
|
62 |
+
self.residual=mySequential(
|
63 |
+
nn.Conv1d(nin,nout,kernel_size=1,padding='same',bias=bias),
|
64 |
+
normalization(nout) #nn.BatchNorm1d(nout,eps)
|
65 |
+
)
|
66 |
+
|
67 |
+
nin=nout
|
68 |
+
model=[]
|
69 |
+
|
70 |
+
self.emb_layers = nn.Sequential(
|
71 |
+
nn.SiLU(),
|
72 |
+
nn.Linear(
|
73 |
+
emb_channels,
|
74 |
+
2 * nout if use_scale_shift_norm else nout,
|
75 |
+
),
|
76 |
+
)
|
77 |
+
|
78 |
+
for i in range(R-1):
|
79 |
+
model.append(SCBD(nin,nout,kernel_size,dropout,bias=bias))
|
80 |
+
nin=nout
|
81 |
+
|
82 |
+
if separable:
|
83 |
+
model.append(SCBD(nin,nout,kernel_size,dropout,rd=False,bias=bias))
|
84 |
+
else:
|
85 |
+
model.append(SCBD(nin,nout,kernel_size,dropout,rd=False,separable=False,bias=bias))
|
86 |
+
|
87 |
+
self.model=mySequential(*model)
|
88 |
+
if self.se:
|
89 |
+
self.se_layer=SqueezeExcite(nin,ratio)
|
90 |
+
|
91 |
+
self.mout= mySequential(nn.SiLU(),nn.Dropout(dropout))
|
92 |
+
|
93 |
+
def forward(self,x,emb,mask=None):
|
94 |
+
x_new=self.in_layers(x)
|
95 |
+
emb = self.emb_layers(emb)
|
96 |
+
while len(emb.shape) < len(x_new.shape):
|
97 |
+
emb = emb[..., None]
|
98 |
+
scale, shift = torch.chunk(emb, 2, dim=1)
|
99 |
+
x_new = x_new * (1 + scale) + shift
|
100 |
+
y,_=self.model(x_new)
|
101 |
+
|
102 |
+
if self.se:
|
103 |
+
y,_=self.se_layer(y,mask)
|
104 |
+
y+=self.residual(x)
|
105 |
+
y=self.mout(y)
|
106 |
+
|
107 |
+
return y
|
108 |
+
|
109 |
+
class QuartzAttn(TimestepBlock):
|
110 |
+
def __init__(self, model_channels, dropout, num_heads):
|
111 |
+
super().__init__()
|
112 |
+
self.resblk = QuartzNetBlock(model_channels, model_channels, model_channels,dropout=dropout,use_scale_shift_norm=True)
|
113 |
+
self.attn = AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True)
|
114 |
+
|
115 |
+
def forward(self, x, time_emb):
|
116 |
+
y = self.resblk(x, time_emb)
|
117 |
+
return self.attn(y)
|
118 |
+
|
119 |
+
class QuartzNet9x5(nn.Module):
|
120 |
+
def __init__(self,model_channels,num_heads,enable_fp16=False):
|
121 |
+
super(QuartzNet9x5,self).__init__()
|
122 |
+
self.enable_fp16 = enable_fp16
|
123 |
+
|
124 |
+
self.conv1=QuartzNetBlock(model_channels,model_channels,model_channels,kernel_size=3,dropout=0.1,R=3)
|
125 |
+
kernels=[5,7,9,13,15,17]
|
126 |
+
quartznet=[]
|
127 |
+
attn=[]
|
128 |
+
for i in kernels:
|
129 |
+
quartznet.append(QuartzNetBlock(model_channels,model_channels,model_channels,kernel_size=i,dropout=0.1,R=5,se=True))
|
130 |
+
attn.append(AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True))
|
131 |
+
kernels=[21,23,25]
|
132 |
+
quartznet.append(QuartzNetBlock(model_channels,model_channels,model_channels,kernel_size=21,dropout=0.1,R=5,se=True))
|
133 |
+
attn.append(AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True))
|
134 |
+
|
135 |
+
for i in kernels[1:]:
|
136 |
+
quartznet.append(QuartzNetBlock(model_channels,model_channels,model_channels,kernel_size=i,dropout=0.1,R=5,se=True))
|
137 |
+
attn.append(AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True))
|
138 |
+
self.quartznet= nn.ModuleList(quartznet)
|
139 |
+
self.attn = nn.ModuleList(attn)
|
140 |
+
self.conv3=nn.Conv1d(model_channels, model_channels, 1, padding='same')
|
141 |
+
|
142 |
+
|
143 |
+
def forward(self, x, time_emb):
|
144 |
+
x = self.conv1(x,time_emb)
|
145 |
+
# with autocast(x.device.type, enabled=self.enable_fp16):
|
146 |
+
for n,(layer,attn) in enumerate(zip(self.quartznet,self.attn)):
|
147 |
+
x = layer(x,time_emb) #256 dim
|
148 |
+
x = attn(x)
|
149 |
+
x = self.conv3(x.float())
|
150 |
+
return x
|
151 |
+
|
152 |
+
class DiffModel(nn.Module):
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
input_channels=80,
|
157 |
+
output_channels=160,
|
158 |
+
model_channels=512,
|
159 |
+
num_heads=8,
|
160 |
+
dropout=0.0,
|
161 |
+
multispeaker = True,
|
162 |
+
condition_free_per=0.1,
|
163 |
+
training = False,
|
164 |
+
ar_active = False,
|
165 |
+
in_latent_channels = 10004
|
166 |
+
):
|
167 |
+
|
168 |
+
super().__init__()
|
169 |
+
self.input_channels = input_channels
|
170 |
+
self.model_channels = model_channels
|
171 |
+
self.output_channels = output_channels
|
172 |
+
self.num_heads = num_heads
|
173 |
+
self.dropout = dropout
|
174 |
+
self.condition_free_per = condition_free_per
|
175 |
+
self.training = training
|
176 |
+
self.multispeaker = multispeaker
|
177 |
+
self.ar_active = ar_active
|
178 |
+
self.in_latent_channels = in_latent_channels
|
179 |
+
|
180 |
+
if not self.ar_active:
|
181 |
+
self.code_emb = nn.Embedding(config.semantic_model_centroids+1,model_channels)
|
182 |
+
self.code_converter = mySequential(
|
183 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
184 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
185 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
186 |
+
)
|
187 |
+
else:
|
188 |
+
self.code_converter = mySequential(
|
189 |
+
nn.Conv1d(self.in_latent_channels, model_channels, 3, padding=1),
|
190 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
191 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
192 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
193 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
194 |
+
)
|
195 |
+
if self.multispeaker:
|
196 |
+
self.GST = GST(model_channels,num_heads)
|
197 |
+
|
198 |
+
self.code_norm = normalization(model_channels)
|
199 |
+
self.time_norm = normalization(model_channels)
|
200 |
+
self.noise_norm = normalization(model_channels)
|
201 |
+
self.code_time_norm = normalization(model_channels)
|
202 |
+
|
203 |
+
# self.code_latent = []
|
204 |
+
self.time_embed = mySequential(
|
205 |
+
nn.Linear(model_channels, model_channels),
|
206 |
+
nn.SiLU(),
|
207 |
+
nn.Linear(model_channels, model_channels),)
|
208 |
+
|
209 |
+
self.input_block = nn.Conv1d(input_channels,model_channels,3,1,1)
|
210 |
+
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
|
211 |
+
|
212 |
+
self.code_time = TimestepEmbedSequential(QuartzAttn(model_channels, dropout, num_heads),QuartzAttn(model_channels, dropout, num_heads),QuartzAttn(model_channels, dropout, num_heads))
|
213 |
+
self.layers = QuartzNet9x5(model_channels,num_heads)
|
214 |
+
|
215 |
+
self.out = nn.Sequential(
|
216 |
+
normalization(model_channels),
|
217 |
+
nn.SiLU(),
|
218 |
+
nn.Conv1d(model_channels, output_channels, 3, padding=1),
|
219 |
+
)
|
220 |
+
|
221 |
+
def get_speaker_latent(self, ref_mels):
|
222 |
+
ref_mels = ref_mels.unsqueeze(1) if len(
|
223 |
+
ref_mels.shape) == 3 else ref_mels
|
224 |
+
|
225 |
+
conds = []
|
226 |
+
for j in range(ref_mels.shape[1]):
|
227 |
+
conds.append(self.GST(ref_mels[:, j,:,:]))
|
228 |
+
|
229 |
+
conds = torch.cat(conds, dim=-1)
|
230 |
+
conds = conds.mean(dim=-1)
|
231 |
+
|
232 |
+
return conds.unsqueeze(2)
|
233 |
+
|
234 |
+
def forward(self ,x,t,code_emb,ref_clips=None,speaker_latents=None,conditioning_free=False):
|
235 |
+
time_embed = self.time_norm(self.time_embed(timestep_embedding(t.unsqueeze(-1),self.model_channels)).permute(0,2,1)).squeeze(2)
|
236 |
+
if conditioning_free:
|
237 |
+
code_embed = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
238 |
+
else:
|
239 |
+
if not self.ar_active:
|
240 |
+
code_embed = self.code_norm(self.code_converter(self.code_emb(code_emb).permute(0,2,1)))
|
241 |
+
else:
|
242 |
+
code_embed = self.code_norm(self.code_converter(code_emb))
|
243 |
+
if self.multispeaker:
|
244 |
+
assert speaker_latents is not None or ref_clips is not None
|
245 |
+
if ref_clips is not None:
|
246 |
+
speaker_latents = self.get_speaker_latent(ref_clips)
|
247 |
+
cond_scale, cond_shift = torch.chunk(speaker_latents, 2, dim=1)
|
248 |
+
code_embed = code_embed * (1 + cond_scale) + cond_shift
|
249 |
+
if self.training and self.condition_free_per > 0:
|
250 |
+
unconditioned_batches = torch.rand((code_embed.shape[0], 1, 1),
|
251 |
+
device=code_embed.device) < self.condition_free_per
|
252 |
+
code_embed = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(code_embed.shape[0], 1, 1),
|
253 |
+
code_embed)
|
254 |
+
|
255 |
+
expanded_code_emb = F.interpolate(code_embed, size=x.shape[-1], mode='nearest') #try different modes
|
256 |
+
|
257 |
+
x_cond = self.code_time_norm(self.code_time(expanded_code_emb,time_embed))
|
258 |
+
|
259 |
+
x = self.noise_norm(self.input_block(x))
|
260 |
+
x += x_cond
|
261 |
+
x = self.layers(x, time_embed)
|
262 |
+
out = self.out(x)
|
263 |
+
return out
|
264 |
+
|
265 |
+
def load_diff_model(checkpoint,device,model_channels=512,ar_active=False,len_code_labels=10004):
|
266 |
+
diff_model = DiffModel(input_channels=80,
|
267 |
+
output_channels=160,
|
268 |
+
model_channels=512,
|
269 |
+
num_heads=8,
|
270 |
+
dropout=0.15,
|
271 |
+
condition_free_per=0.15,
|
272 |
+
multispeaker=True,
|
273 |
+
training=False,
|
274 |
+
ar_active=ar_active,
|
275 |
+
in_latent_channels = len_code_labels)
|
276 |
+
|
277 |
+
# diff_model.load_state_dict(torch.load('/content/LibriTTS_fp64_10k/S2A/_latest.pt',map_location=torch.device('cpu')),strict=True)
|
278 |
+
diff_model.load_state_dict(torch.load(checkpoint,map_location=torch.device('cpu')),strict=True)
|
279 |
+
diff_model=diff_model.eval().to(device)
|
280 |
+
return diff_model
|
281 |
+
|
282 |
+
|
283 |
+
if __name__ == '__main__':
|
284 |
+
|
285 |
+
device = torch.device('cpu')
|
286 |
+
diff_model = DiffModel(input_channels=80,
|
287 |
+
output_channels=160,
|
288 |
+
model_channels=1024,
|
289 |
+
num_heads=8,
|
290 |
+
dropout=0.1,
|
291 |
+
num_layers=8,
|
292 |
+
enable_fp16=True,
|
293 |
+
condition_free_per=0.1,
|
294 |
+
multispeaker=True,
|
295 |
+
training=True).to(device)
|
296 |
+
|
297 |
+
batch_Size = 32
|
298 |
+
timeseries = 800
|
299 |
+
from torchinfo import summary
|
300 |
+
summary(diff_model, input_data={'x': torch.randn(batch_Size, 80, timeseries).to(device),
|
301 |
+
'ref_clips': torch.randn(batch_Size,3, 80, timeseries).to(device),
|
302 |
+
't':torch.LongTensor(size=[batch_Size,]).to(device),
|
303 |
+
'code_emb':torch.randint(0,201,(batch_Size,timeseries)).to(device)})
|
maha_tts/models/modules.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch,math
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.nn.init as init
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
|
7 |
+
def zero_module(module):
|
8 |
+
"""
|
9 |
+
Zero out the parameters of a module and return it.
|
10 |
+
Using it for Zero Convolutions
|
11 |
+
"""
|
12 |
+
for p in module.parameters():
|
13 |
+
p.detach().zero_()
|
14 |
+
return module
|
15 |
+
|
16 |
+
|
17 |
+
class GroupNorm32(nn.GroupNorm):
|
18 |
+
def forward(self, x):
|
19 |
+
return super().forward(x.float()).type(x.dtype)
|
20 |
+
|
21 |
+
|
22 |
+
def normalization(channels):
|
23 |
+
"""
|
24 |
+
Make a standard normalization layer. of groups ranging from 2 to 32.
|
25 |
+
|
26 |
+
:param channels: number of input channels.
|
27 |
+
:return: an nn.Module for normalization.
|
28 |
+
"""
|
29 |
+
groups = 32
|
30 |
+
if channels <= 16:
|
31 |
+
groups = 8
|
32 |
+
elif channels <= 64:
|
33 |
+
groups = 16
|
34 |
+
while channels % groups != 0:
|
35 |
+
groups = int(groups / 2)
|
36 |
+
assert groups > 2
|
37 |
+
return GroupNorm32(groups, channels)
|
38 |
+
|
39 |
+
|
40 |
+
class mySequential(nn.Sequential):
|
41 |
+
'''Using this to pass mask variable to nn layers
|
42 |
+
'''
|
43 |
+
def forward(self, *inputs):
|
44 |
+
for module in self._modules.values():
|
45 |
+
if type(inputs) == tuple:
|
46 |
+
inputs = module(*inputs)
|
47 |
+
else:
|
48 |
+
inputs = module(inputs)
|
49 |
+
return inputs
|
50 |
+
|
51 |
+
class SepConv1D(nn.Module):
|
52 |
+
'''Depth wise separable Convolution layer with mask
|
53 |
+
'''
|
54 |
+
def __init__(self,nin,nout,kernel_size,stride=1,dilation=1,padding_mode='same',bias=True):
|
55 |
+
super(SepConv1D,self).__init__()
|
56 |
+
self.conv1=nn.Conv1d(nin, nin, kernel_size=kernel_size, stride=stride,groups=nin,dilation=dilation,padding=padding_mode,bias=bias)
|
57 |
+
self.conv2=nn.Conv1d(nin,nout,kernel_size=1,stride=1,padding=padding_mode,bias=bias)
|
58 |
+
|
59 |
+
def forward(self,x,mask=None):
|
60 |
+
if mask is not None:
|
61 |
+
x = x * mask.unsqueeze(1).to(device=x.device)
|
62 |
+
x=self.conv1(x)
|
63 |
+
x=self.conv2(x)
|
64 |
+
return x,mask
|
65 |
+
|
66 |
+
class Conv1DBN(nn.Module):
|
67 |
+
def __init__(self,nin,nout,kernel_size,stride=1,dilation=1,dropout=0.1,padding_mode='same',bias=False):
|
68 |
+
super(Conv1DBN,self).__init__()
|
69 |
+
self.conv1=nn.Conv1d(nin, nout, kernel_size=kernel_size, stride=stride,padding=padding_mode,dilation=dilation,bias=bias)
|
70 |
+
self.bn=nn.BatchNorm1d(nout)
|
71 |
+
self.drop=nn.Dropout(dropout)
|
72 |
+
|
73 |
+
def forward(self,x,mask=None):
|
74 |
+
if mask is not None:
|
75 |
+
x = x * mask.unsqueeze(1).to(device=x.device)
|
76 |
+
x=self.conv1(x)
|
77 |
+
x=self.bn(x)
|
78 |
+
x=F.relu(x)
|
79 |
+
x=self.drop(x)
|
80 |
+
return x,mask
|
81 |
+
|
82 |
+
class Conv1d(nn.Module):
|
83 |
+
'''normal conv1d with mask
|
84 |
+
'''
|
85 |
+
def __init__(self,nin,nout,kernel_size,padding,bias=True):
|
86 |
+
super(Conv1d,self).__init__()
|
87 |
+
self.l=nn.Conv1d(nin,nout,kernel_size,padding=padding,bias=bias)
|
88 |
+
def forward(self,x,mask):
|
89 |
+
if mask is not None:
|
90 |
+
x = x * mask.unsqueeze(1).to(device=x.device)
|
91 |
+
y=self.l(x)
|
92 |
+
return y,mask
|
93 |
+
|
94 |
+
class SqueezeExcite(nn.Module):
|
95 |
+
'''Let the CNN decide how to add across channels
|
96 |
+
'''
|
97 |
+
def __init__(self,nin,ratio=8):
|
98 |
+
super(SqueezeExcite,self).__init__()
|
99 |
+
self.nin=nin
|
100 |
+
self.ratio=ratio
|
101 |
+
|
102 |
+
self.fc=mySequential(
|
103 |
+
nn.Linear(nin,nin//ratio,bias=True),nn.SiLU(inplace=True),nn.Linear(nin//ratio,nin,bias=True)
|
104 |
+
)
|
105 |
+
|
106 |
+
def forward(self,x,mask=None):
|
107 |
+
if mask is None:
|
108 |
+
mask = torch.ones((x.shape[0],x.shape[-1]),dtype=torch.bool).to(x.device)
|
109 |
+
mask=~mask
|
110 |
+
x=x.float()
|
111 |
+
x.masked_fill_(mask.unsqueeze(1), 0.0)
|
112 |
+
mask=~mask
|
113 |
+
y = (torch.sum(x, dim=-1, keepdim=True) / mask.unsqueeze(1).sum(dim=-1, keepdim=True)).type(x.dtype)
|
114 |
+
# y=torch.mean(x,-1,keepdim=True)
|
115 |
+
y=y.transpose(1, -1)
|
116 |
+
y=self.fc(y)
|
117 |
+
y=torch.sigmoid(y)
|
118 |
+
y=y.transpose(1, -1)
|
119 |
+
y= x * y
|
120 |
+
return y,mask
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
class SCBD(nn.Module):
|
125 |
+
'''SeparableConv1D + Batchnorm + Dropout, Generally use it for middle layers and resnet
|
126 |
+
'''
|
127 |
+
def __init__(self,nin,nout,kernel_size,p=0.1,rd=True,separable=True,bias=True):
|
128 |
+
super(SCBD,self).__init__()
|
129 |
+
if separable:
|
130 |
+
self.SC=SepConv1D(nin,nout,kernel_size,bias=bias)
|
131 |
+
else:
|
132 |
+
self.SC=Conv1d(nin,nout,kernel_size,padding='same',bias=bias)
|
133 |
+
|
134 |
+
if rd: #relu and Dropout
|
135 |
+
self.mout=mySequential(normalization(nout),nn.SiLU(), # nn.BatchNorm1d(nout,eps)
|
136 |
+
nn.Dropout(p))
|
137 |
+
else:
|
138 |
+
self.mout=normalization(nout) # nn.BatchNorm1d(nout,eps)
|
139 |
+
|
140 |
+
def forward(self,x,mask=None):
|
141 |
+
if mask is not None:
|
142 |
+
x = x * mask.unsqueeze(1).to(device=x.device)
|
143 |
+
x,_= self.SC(x,mask)
|
144 |
+
y = self.mout(x)
|
145 |
+
return y,mask
|
146 |
+
|
147 |
+
class QuartzNetBlock(nn.Module):
|
148 |
+
'''Similar to Resnet block with Batchnorm and dropout, and using Separable conv in the middle.
|
149 |
+
if its the last layer,set se = False and separable = False, and use a projection layer on top of this.
|
150 |
+
'''
|
151 |
+
def __init__(self,nin,nout,kernel_size,dropout=0.1,R=5,se=False,ratio=8,separable=False,bias=True):
|
152 |
+
super(QuartzNetBlock,self).__init__()
|
153 |
+
self.se=se
|
154 |
+
self.residual=mySequential(
|
155 |
+
nn.Conv1d(nin,nout,kernel_size=1,padding='same',bias=bias),
|
156 |
+
normalization(nout) #nn.BatchNorm1d(nout,eps)
|
157 |
+
)
|
158 |
+
model=[]
|
159 |
+
|
160 |
+
for i in range(R-1):
|
161 |
+
model.append(SCBD(nin,nout,kernel_size,dropout,eps=0.001,bias=bias))
|
162 |
+
nin=nout
|
163 |
+
|
164 |
+
if separable:
|
165 |
+
model.append(SCBD(nin,nout,kernel_size,dropout,eps=0.001,rd=False,bias=bias))
|
166 |
+
else:
|
167 |
+
model.append(SCBD(nin,nout,kernel_size,dropout,eps=0.001,rd=False,separable=False,bias=bias))
|
168 |
+
self.model=mySequential(*model)
|
169 |
+
|
170 |
+
if self.se:
|
171 |
+
self.se_layer=SqueezeExcite(nin,ratio)
|
172 |
+
|
173 |
+
self.mout= mySequential(nn.SiLU(),nn.Dropout(dropout))
|
174 |
+
|
175 |
+
def forward(self,x,mask=None):
|
176 |
+
if mask is not None:
|
177 |
+
x = x * mask.unsqueeze(1).to(device=x.device)
|
178 |
+
y,_=self.model(x,mask)
|
179 |
+
if self.se:
|
180 |
+
y,_=self.se_layer(y,mask)
|
181 |
+
y+=self.residual(x)
|
182 |
+
y=self.mout(y)
|
183 |
+
return y,mask
|
184 |
+
|
185 |
+
class QKVAttentionLegacy(nn.Module):
|
186 |
+
"""
|
187 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/output heads shaping
|
188 |
+
"""
|
189 |
+
|
190 |
+
def __init__(self, n_heads):
|
191 |
+
super().__init__()
|
192 |
+
self.n_heads = n_heads
|
193 |
+
|
194 |
+
def forward(self, qkv, mask=None, rel_pos=None):
|
195 |
+
"""
|
196 |
+
Apply QKV attention.
|
197 |
+
|
198 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
199 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
200 |
+
"""
|
201 |
+
bs, width, length = qkv.shape
|
202 |
+
assert width % (3 * self.n_heads) == 0
|
203 |
+
ch = width // (3 * self.n_heads)
|
204 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
205 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
206 |
+
weight = torch.einsum(
|
207 |
+
"bct,bcs->bts", q * scale, k * scale
|
208 |
+
) # More stable with f16 than dividing afterwards
|
209 |
+
if rel_pos is not None:
|
210 |
+
weight = rel_pos(weight.reshape(bs, self.n_heads, weight.shape[-2], weight.shape[-1])).reshape(bs * self.n_heads, weight.shape[-2], weight.shape[-1])
|
211 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
212 |
+
if mask is not None:
|
213 |
+
# The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs.
|
214 |
+
mask = mask.repeat(self.n_heads, 1).unsqueeze(1)
|
215 |
+
weight = weight * mask
|
216 |
+
a = torch.einsum("bts,bcs->bct", weight, v)
|
217 |
+
|
218 |
+
return a.reshape(bs, -1, length)
|
219 |
+
|
220 |
+
class AttentionBlock(nn.Module):
|
221 |
+
"""
|
222 |
+
An attention block that allows spatial positions to attend to each other.
|
223 |
+
|
224 |
+
Originally ported from here, but adapted to the N-d case.
|
225 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
226 |
+
"""
|
227 |
+
|
228 |
+
def __init__(
|
229 |
+
self,
|
230 |
+
channels,
|
231 |
+
num_heads=1,
|
232 |
+
num_head_channels=-1,
|
233 |
+
do_checkpoint=True,
|
234 |
+
relative_pos_embeddings=False,
|
235 |
+
):
|
236 |
+
super().__init__()
|
237 |
+
self.channels = channels
|
238 |
+
self.do_checkpoint = do_checkpoint
|
239 |
+
if num_head_channels == -1:
|
240 |
+
self.num_heads = num_heads
|
241 |
+
else:
|
242 |
+
assert (
|
243 |
+
channels % num_head_channels == 0
|
244 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
245 |
+
self.num_heads = channels // num_head_channels
|
246 |
+
self.norm = normalization(channels)
|
247 |
+
self.qkv = nn.Conv1d(channels, channels * 3, 1)
|
248 |
+
# split heads before split qkv
|
249 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
250 |
+
|
251 |
+
self.proj_out = zero_module(nn.Conv1d(channels, channels, 1)) # no effect of attention in the inital stages.
|
252 |
+
# if relative_pos_embeddings:
|
253 |
+
self.relative_pos_embeddings = RelativePositionBias(scale=(channels // self.num_heads) ** .5, causal=False, heads=num_heads, num_buckets=32, max_distance=64) #need to read about this, vit and swin transformers
|
254 |
+
# self.relative_pos_embeddings = FixedPositionalEmbedding(dim=channels)
|
255 |
+
# else:
|
256 |
+
# self.relative_pos_embeddings = None
|
257 |
+
|
258 |
+
def forward(self, x, mask=None):
|
259 |
+
b, c, *spatial = x.shape
|
260 |
+
x = x.reshape(b, c, -1)
|
261 |
+
qkv = self.qkv(self.norm(x))
|
262 |
+
h = self.attention(qkv, mask, self.relative_pos_embeddings)
|
263 |
+
h = self.proj_out(h)
|
264 |
+
return (x + h).reshape(b, c, *spatial)
|
265 |
+
|
266 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
267 |
+
def __init__(self, dim, max_seq_len):
|
268 |
+
super().__init__()
|
269 |
+
self.scale = dim ** -0.5
|
270 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
271 |
+
|
272 |
+
def forward(self, x):
|
273 |
+
n = torch.arange(x.shape[1], device=x.device)
|
274 |
+
pos_emb = self.emb(n)
|
275 |
+
pos_emb = rearrange(pos_emb, 'n d -> () n d')
|
276 |
+
return pos_emb * self.scale
|
277 |
+
|
278 |
+
|
279 |
+
class FixedPositionalEmbedding(nn.Module):
|
280 |
+
def __init__(self, dim):
|
281 |
+
super().__init__()
|
282 |
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
283 |
+
self.register_buffer('inv_freq', inv_freq)
|
284 |
+
|
285 |
+
def forward(self, x, seq_dim=1, offset=0):
|
286 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
287 |
+
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
288 |
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
289 |
+
return rearrange(emb, 'n d -> () n d')
|
290 |
+
|
291 |
+
class RelativePositionBias(nn.Module):
|
292 |
+
def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8):
|
293 |
+
super().__init__()
|
294 |
+
self.scale = scale
|
295 |
+
self.causal = causal
|
296 |
+
self.num_buckets = num_buckets
|
297 |
+
self.max_distance = max_distance
|
298 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
|
299 |
+
|
300 |
+
@staticmethod
|
301 |
+
def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128):
|
302 |
+
ret = 0
|
303 |
+
n = -relative_position
|
304 |
+
if not causal:
|
305 |
+
num_buckets //= 2
|
306 |
+
ret += (n < 0).long() * num_buckets
|
307 |
+
n = torch.abs(n)
|
308 |
+
else:
|
309 |
+
n = torch.max(n, torch.zeros_like(n))
|
310 |
+
|
311 |
+
max_exact = num_buckets // 2
|
312 |
+
is_small = n < max_exact
|
313 |
+
|
314 |
+
val_if_large = max_exact + (
|
315 |
+
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
316 |
+
).long()
|
317 |
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
318 |
+
|
319 |
+
ret += torch.where(is_small, n, val_if_large)
|
320 |
+
return ret
|
321 |
+
|
322 |
+
def forward(self, qk_dots):
|
323 |
+
i, j, device = *qk_dots.shape[-2:], qk_dots.device
|
324 |
+
q_pos = torch.arange(i, dtype=torch.long, device=device)
|
325 |
+
k_pos = torch.arange(j, dtype=torch.long, device=device)
|
326 |
+
rel_pos = k_pos[None, :] - q_pos[:, None]
|
327 |
+
rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets,
|
328 |
+
max_distance=self.max_distance)
|
329 |
+
values = self.relative_attention_bias(rp_bucket)
|
330 |
+
bias = rearrange(values, 'i j h -> () h i j')
|
331 |
+
return qk_dots + (bias * self.scale)
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
class MultiHeadAttention(nn.Module):
|
336 |
+
'''
|
337 |
+
only for GST
|
338 |
+
input:
|
339 |
+
query --- [N, T_q, query_dim]
|
340 |
+
key --- [N, T_k, key_dim]
|
341 |
+
output:
|
342 |
+
out --- [N, T_q, num_units]
|
343 |
+
'''
|
344 |
+
def __init__(self, query_dim, key_dim, num_units, num_heads):
|
345 |
+
super().__init__()
|
346 |
+
self.num_units = num_units
|
347 |
+
self.num_heads = num_heads
|
348 |
+
self.key_dim = key_dim
|
349 |
+
|
350 |
+
self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False)
|
351 |
+
self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
|
352 |
+
self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
|
353 |
+
|
354 |
+
def forward(self, query, key):
|
355 |
+
querys = self.W_query(query) # [N, T_q, num_units]
|
356 |
+
keys = self.W_key(key) # [N, T_k, num_units]
|
357 |
+
values = self.W_value(key)
|
358 |
+
|
359 |
+
split_size = self.num_units // self.num_heads
|
360 |
+
querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0) # [h, N, T_q, num_units/h]
|
361 |
+
keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
|
362 |
+
values = torch.stack(torch.split(values, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
|
363 |
+
|
364 |
+
# score = softmax(QK^T / (d_k ** 0.5))
|
365 |
+
scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k]
|
366 |
+
scores = scores / (self.key_dim ** 0.5)
|
367 |
+
scores = F.softmax(scores, dim=3)
|
368 |
+
|
369 |
+
# out = score * V
|
370 |
+
out = torch.matmul(scores, values) # [h, N, T_q, num_units/h]
|
371 |
+
out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units]
|
372 |
+
|
373 |
+
return out
|
374 |
+
|
375 |
+
|
376 |
+
class GST(nn.Module):
|
377 |
+
def __init__(self,model_channels=512,num_heads=8,in_channels=80,k=2):
|
378 |
+
super(GST,self).__init__()
|
379 |
+
self.model_channels=model_channels
|
380 |
+
self.num_heads=num_heads
|
381 |
+
|
382 |
+
self.reference_encoder=nn.Sequential(
|
383 |
+
nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
|
384 |
+
nn.Conv1d(model_channels, model_channels*k,3,padding=1,stride=2),
|
385 |
+
AttentionBlock(model_channels*k, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
386 |
+
AttentionBlock(model_channels*k, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
387 |
+
AttentionBlock(model_channels*k, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
388 |
+
AttentionBlock(model_channels*k, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
389 |
+
AttentionBlock(model_channels*k, num_heads, relative_pos_embeddings=True, do_checkpoint=False)
|
390 |
+
)
|
391 |
+
|
392 |
+
def forward(self,x):
|
393 |
+
x=self.reference_encoder(x)
|
394 |
+
return x
|
395 |
+
|
396 |
+
|
397 |
+
if __name__ == '__main__':
|
398 |
+
device = torch.device('cpu')
|
399 |
+
m = GST(512,10).to(device)
|
400 |
+
mels = torch.rand((16,80,1000)).to(device)
|
401 |
+
|
402 |
+
o = m(mels)
|
403 |
+
print(o.shape,'final output')
|
404 |
+
|
405 |
+
from torchinfo import summary
|
406 |
+
summary(m, input_data={'x': torch.randn(16,80,500).to(device)})
|
maha_tts/models/vocoder.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
copde from https://github.com/jik876/hifi-gan/blob/master/models.py
|
3 |
+
'''
|
4 |
+
|
5 |
+
import json,os
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
11 |
+
# from utils import init_weights, get_padding
|
12 |
+
|
13 |
+
LRELU_SLOPE = 0.1
|
14 |
+
|
15 |
+
class AttrDict(dict):
|
16 |
+
def __init__(self, *args, **kwargs):
|
17 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
18 |
+
self.__dict__ = self
|
19 |
+
|
20 |
+
def init_weights(m, mean=0.0, std=0.01):
|
21 |
+
classname = m.__class__.__name__
|
22 |
+
if classname.find("Conv") != -1:
|
23 |
+
m.weight.data.normal_(mean, std)
|
24 |
+
|
25 |
+
|
26 |
+
def apply_weight_norm(m):
|
27 |
+
classname = m.__class__.__name__
|
28 |
+
if classname.find("Conv") != -1:
|
29 |
+
weight_norm(m)
|
30 |
+
|
31 |
+
|
32 |
+
def get_padding(kernel_size, dilation=1):
|
33 |
+
return int((kernel_size*dilation - dilation)/2)
|
34 |
+
|
35 |
+
|
36 |
+
class ResBlock1(torch.nn.Module):
|
37 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
38 |
+
super(ResBlock1, self).__init__()
|
39 |
+
self.h = h
|
40 |
+
self.convs1 = nn.ModuleList([
|
41 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
42 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
43 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
44 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
45 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
46 |
+
padding=get_padding(kernel_size, dilation[2])))
|
47 |
+
])
|
48 |
+
self.convs1.apply(init_weights)
|
49 |
+
|
50 |
+
self.convs2 = nn.ModuleList([
|
51 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
52 |
+
padding=get_padding(kernel_size, 1))),
|
53 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
54 |
+
padding=get_padding(kernel_size, 1))),
|
55 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
56 |
+
padding=get_padding(kernel_size, 1)))
|
57 |
+
])
|
58 |
+
self.convs2.apply(init_weights)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
62 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
63 |
+
xt = c1(xt)
|
64 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
65 |
+
xt = c2(xt)
|
66 |
+
x = xt + x
|
67 |
+
return x
|
68 |
+
|
69 |
+
def remove_weight_norm(self):
|
70 |
+
for l in self.convs1:
|
71 |
+
remove_weight_norm(l)
|
72 |
+
for l in self.convs2:
|
73 |
+
remove_weight_norm(l)
|
74 |
+
|
75 |
+
|
76 |
+
class ResBlock2(torch.nn.Module):
|
77 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
|
78 |
+
super(ResBlock2, self).__init__()
|
79 |
+
self.h = h
|
80 |
+
self.convs = nn.ModuleList([
|
81 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
82 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
83 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
84 |
+
padding=get_padding(kernel_size, dilation[1])))
|
85 |
+
])
|
86 |
+
self.convs.apply(init_weights)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
for c in self.convs:
|
90 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
91 |
+
xt = c(xt)
|
92 |
+
x = xt + x
|
93 |
+
return x
|
94 |
+
|
95 |
+
def remove_weight_norm(self):
|
96 |
+
for l in self.convs:
|
97 |
+
remove_weight_norm(l)
|
98 |
+
|
99 |
+
|
100 |
+
class Generator(torch.nn.Module):
|
101 |
+
def __init__(self, h):
|
102 |
+
super(Generator, self).__init__()
|
103 |
+
self.h = h
|
104 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
105 |
+
self.num_upsamples = len(h.upsample_rates)
|
106 |
+
self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3))
|
107 |
+
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
|
108 |
+
|
109 |
+
self.ups = nn.ModuleList()
|
110 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
111 |
+
self.ups.append(weight_norm(
|
112 |
+
ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)),
|
113 |
+
k, u, padding=(k-u)//2)))
|
114 |
+
|
115 |
+
self.resblocks = nn.ModuleList()
|
116 |
+
for i in range(len(self.ups)):
|
117 |
+
ch = h.upsample_initial_channel//(2**(i+1))
|
118 |
+
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
119 |
+
self.resblocks.append(resblock(h, ch, k, d))
|
120 |
+
|
121 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
122 |
+
self.ups.apply(init_weights)
|
123 |
+
self.conv_post.apply(init_weights)
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
x = self.conv_pre(x)
|
127 |
+
for i in range(self.num_upsamples):
|
128 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
129 |
+
x = self.ups[i](x)
|
130 |
+
xs = None
|
131 |
+
for j in range(self.num_kernels):
|
132 |
+
if xs is None:
|
133 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
134 |
+
else:
|
135 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
136 |
+
x = xs / self.num_kernels
|
137 |
+
x = F.leaky_relu(x)
|
138 |
+
x = self.conv_post(x)
|
139 |
+
x = torch.tanh(x)
|
140 |
+
|
141 |
+
return x
|
142 |
+
|
143 |
+
def remove_weight_norm(self):
|
144 |
+
# print('Removing weight norm...')
|
145 |
+
for l in self.ups:
|
146 |
+
remove_weight_norm(l)
|
147 |
+
for l in self.resblocks:
|
148 |
+
l.remove_weight_norm()
|
149 |
+
remove_weight_norm(self.conv_pre)
|
150 |
+
remove_weight_norm(self.conv_post)
|
151 |
+
|
152 |
+
|
153 |
+
class DiscriminatorP(torch.nn.Module):
|
154 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
155 |
+
super(DiscriminatorP, self).__init__()
|
156 |
+
self.period = period
|
157 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
158 |
+
self.convs = nn.ModuleList([
|
159 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
160 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
161 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
162 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
163 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
164 |
+
])
|
165 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
fmap = []
|
169 |
+
|
170 |
+
# 1d to 2d
|
171 |
+
b, c, t = x.shape
|
172 |
+
if t % self.period != 0: # pad first
|
173 |
+
n_pad = self.period - (t % self.period)
|
174 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
175 |
+
t = t + n_pad
|
176 |
+
x = x.view(b, c, t // self.period, self.period)
|
177 |
+
|
178 |
+
for l in self.convs:
|
179 |
+
x = l(x)
|
180 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
181 |
+
fmap.append(x)
|
182 |
+
x = self.conv_post(x)
|
183 |
+
fmap.append(x)
|
184 |
+
x = torch.flatten(x, 1, -1)
|
185 |
+
|
186 |
+
return x, fmap
|
187 |
+
|
188 |
+
|
189 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
190 |
+
def __init__(self):
|
191 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
192 |
+
self.discriminators = nn.ModuleList([
|
193 |
+
DiscriminatorP(2),
|
194 |
+
DiscriminatorP(3),
|
195 |
+
DiscriminatorP(5),
|
196 |
+
DiscriminatorP(7),
|
197 |
+
DiscriminatorP(11),
|
198 |
+
])
|
199 |
+
|
200 |
+
def forward(self, y, y_hat):
|
201 |
+
y_d_rs = []
|
202 |
+
y_d_gs = []
|
203 |
+
fmap_rs = []
|
204 |
+
fmap_gs = []
|
205 |
+
for i, d in enumerate(self.discriminators):
|
206 |
+
y_d_r, fmap_r = d(y)
|
207 |
+
y_d_g, fmap_g = d(y_hat)
|
208 |
+
y_d_rs.append(y_d_r)
|
209 |
+
fmap_rs.append(fmap_r)
|
210 |
+
y_d_gs.append(y_d_g)
|
211 |
+
fmap_gs.append(fmap_g)
|
212 |
+
|
213 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
214 |
+
|
215 |
+
|
216 |
+
class DiscriminatorS(torch.nn.Module):
|
217 |
+
def __init__(self, use_spectral_norm=False):
|
218 |
+
super(DiscriminatorS, self).__init__()
|
219 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
220 |
+
self.convs = nn.ModuleList([
|
221 |
+
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
222 |
+
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
223 |
+
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
224 |
+
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
225 |
+
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
226 |
+
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
227 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
228 |
+
])
|
229 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
230 |
+
|
231 |
+
def forward(self, x):
|
232 |
+
fmap = []
|
233 |
+
for l in self.convs:
|
234 |
+
x = l(x)
|
235 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
236 |
+
fmap.append(x)
|
237 |
+
x = self.conv_post(x)
|
238 |
+
fmap.append(x)
|
239 |
+
x = torch.flatten(x, 1, -1)
|
240 |
+
|
241 |
+
return x, fmap
|
242 |
+
|
243 |
+
|
244 |
+
class MultiScaleDiscriminator(torch.nn.Module):
|
245 |
+
def __init__(self):
|
246 |
+
super(MultiScaleDiscriminator, self).__init__()
|
247 |
+
self.discriminators = nn.ModuleList([
|
248 |
+
DiscriminatorS(use_spectral_norm=True),
|
249 |
+
DiscriminatorS(),
|
250 |
+
DiscriminatorS(),
|
251 |
+
])
|
252 |
+
self.meanpools = nn.ModuleList([
|
253 |
+
AvgPool1d(4, 2, padding=2),
|
254 |
+
AvgPool1d(4, 2, padding=2)
|
255 |
+
])
|
256 |
+
|
257 |
+
def forward(self, y, y_hat):
|
258 |
+
y_d_rs = []
|
259 |
+
y_d_gs = []
|
260 |
+
fmap_rs = []
|
261 |
+
fmap_gs = []
|
262 |
+
for i, d in enumerate(self.discriminators):
|
263 |
+
if i != 0:
|
264 |
+
y = self.meanpools[i-1](y)
|
265 |
+
y_hat = self.meanpools[i-1](y_hat)
|
266 |
+
y_d_r, fmap_r = d(y)
|
267 |
+
y_d_g, fmap_g = d(y_hat)
|
268 |
+
y_d_rs.append(y_d_r)
|
269 |
+
fmap_rs.append(fmap_r)
|
270 |
+
y_d_gs.append(y_d_g)
|
271 |
+
fmap_gs.append(fmap_g)
|
272 |
+
|
273 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
274 |
+
|
275 |
+
|
276 |
+
def feature_loss(fmap_r, fmap_g):
|
277 |
+
loss = 0
|
278 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
279 |
+
for rl, gl in zip(dr, dg):
|
280 |
+
loss += torch.mean(torch.abs(rl - gl))
|
281 |
+
|
282 |
+
return loss*2
|
283 |
+
|
284 |
+
|
285 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
286 |
+
loss = 0
|
287 |
+
r_losses = []
|
288 |
+
g_losses = []
|
289 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
290 |
+
r_loss = torch.mean((1-dr)**2)
|
291 |
+
g_loss = torch.mean(dg**2)
|
292 |
+
loss += (r_loss + g_loss)
|
293 |
+
r_losses.append(r_loss.item())
|
294 |
+
g_losses.append(g_loss.item())
|
295 |
+
|
296 |
+
return loss, r_losses, g_losses
|
297 |
+
|
298 |
+
|
299 |
+
def generator_loss(disc_outputs):
|
300 |
+
loss = 0
|
301 |
+
gen_losses = []
|
302 |
+
for dg in disc_outputs:
|
303 |
+
l = torch.mean((1-dg)**2)
|
304 |
+
gen_losses.append(l)
|
305 |
+
loss += l
|
306 |
+
|
307 |
+
return loss, gen_losses
|
308 |
+
|
309 |
+
def load_checkpoint(filepath, device):
|
310 |
+
assert os.path.isfile(filepath)
|
311 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
312 |
+
return checkpoint_dict
|
313 |
+
|
314 |
+
def load_vocoder_model(config_path,checkpoint_path,device):
|
315 |
+
# config_file = os.path.join(os.path.split(checkpoint_file)[0], 'config.json')
|
316 |
+
with open(config_path) as f:
|
317 |
+
data = f.read()
|
318 |
+
|
319 |
+
global h
|
320 |
+
json_config = json.loads(data)
|
321 |
+
h = AttrDict(json_config)
|
322 |
+
|
323 |
+
torch.manual_seed(h.seed)
|
324 |
+
|
325 |
+
generator = Generator(h).to(device)
|
326 |
+
|
327 |
+
state_dict_g = load_checkpoint(checkpoint_path, device)
|
328 |
+
generator.load_state_dict(state_dict_g['generator'])
|
329 |
+
|
330 |
+
generator.eval()
|
331 |
+
generator.remove_weight_norm()
|
332 |
+
|
333 |
+
return generator
|
334 |
+
|
335 |
+
def infer_wav(mel,generator):
|
336 |
+
MAX_WAV_VALUE =32768.0
|
337 |
+
with torch.no_grad():
|
338 |
+
y_g_hat = generator(mel)
|
339 |
+
audio = y_g_hat.squeeze()
|
340 |
+
audio = audio * MAX_WAV_VALUE
|
341 |
+
audio = audio.cpu().numpy().astype('int16')
|
342 |
+
return audio
|
maha_tts/pretrained_models/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
maha_tts/pretrained_models/hifigan/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1bd98e99062ddbced38729a5252dc2aa772328d16d70097ac139dab2f269dc9
|
3 |
+
size 799
|
maha_tts/pretrained_models/hifigan/g_02500000
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:771eaf4876485a35e25577563d390c262e23c2421e4a8c929eacfde34a5b7a60
|
3 |
+
size 55788858
|
maha_tts/pretrained_models/smolie/S2A/s2a_latest.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf359fab98b047ef89d79a99a78fee9c38880e307630d3b3af7bc9cb170f366b
|
3 |
+
size 432971673
|
maha_tts/pretrained_models/smolie/T2S/t2s_best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67a10c3bf12a8bca3dd67075ccbfbd79887b244109bd9c96013b0f348d9e2570
|
3 |
+
size 276146627
|
maha_tts/text/__init__.py
ADDED
File without changes
|
maha_tts/text/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (178 Bytes). View file
|
|
maha_tts/text/__pycache__/cleaners.cpython-311.pyc
ADDED
Binary file (7.03 kB). View file
|
|
maha_tts/text/__pycache__/symbols.cpython-311.pyc
ADDED
Binary file (2.37 kB). View file
|
|
maha_tts/text/cleaners.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from unidecode import unidecode
|
3 |
+
import inflect
|
4 |
+
import re
|
5 |
+
|
6 |
+
|
7 |
+
_inflect = inflect.engine()
|
8 |
+
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
|
9 |
+
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
|
10 |
+
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
|
11 |
+
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
|
12 |
+
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
|
13 |
+
_number_re = re.compile(r'[0-9]+')
|
14 |
+
|
15 |
+
|
16 |
+
def _remove_commas(m):
|
17 |
+
return m.group(1).replace(',', '')
|
18 |
+
|
19 |
+
|
20 |
+
def _expand_decimal_point(m):
|
21 |
+
return m.group(1).replace('.', ' point ')
|
22 |
+
|
23 |
+
|
24 |
+
def _expand_dollars(m):
|
25 |
+
match = m.group(1)
|
26 |
+
parts = match.split('.')
|
27 |
+
if len(parts) > 2:
|
28 |
+
return match + ' dollars' # Unexpected format
|
29 |
+
dollars = int(parts[0]) if parts[0] else 0
|
30 |
+
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
31 |
+
if dollars and cents:
|
32 |
+
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
33 |
+
cent_unit = 'cent' if cents == 1 else 'cents'
|
34 |
+
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
|
35 |
+
elif dollars:
|
36 |
+
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
37 |
+
return '%s %s' % (dollars, dollar_unit)
|
38 |
+
elif cents:
|
39 |
+
cent_unit = 'cent' if cents == 1 else 'cents'
|
40 |
+
return '%s %s' % (cents, cent_unit)
|
41 |
+
else:
|
42 |
+
return 'zero dollars'
|
43 |
+
|
44 |
+
|
45 |
+
def _expand_ordinal(m):
|
46 |
+
return _inflect.number_to_words(m.group(0))
|
47 |
+
|
48 |
+
|
49 |
+
def _expand_number(m):
|
50 |
+
num = int(m.group(0))
|
51 |
+
if num > 1000 and num < 3000:
|
52 |
+
if num == 2000:
|
53 |
+
return 'two thousand'
|
54 |
+
elif num > 2000 and num < 2010:
|
55 |
+
return 'two thousand ' + _inflect.number_to_words(num % 100)
|
56 |
+
elif num % 100 == 0:
|
57 |
+
return _inflect.number_to_words(num // 100) + ' hundred'
|
58 |
+
else:
|
59 |
+
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
|
60 |
+
else:
|
61 |
+
return _inflect.number_to_words(num, andword='')
|
62 |
+
|
63 |
+
|
64 |
+
def normalize_numbers(text):
|
65 |
+
text = re.sub(_comma_number_re, _remove_commas, text)
|
66 |
+
text = re.sub(_pounds_re, r'\1 pounds', text)
|
67 |
+
text = re.sub(_dollars_re, _expand_dollars, text)
|
68 |
+
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
69 |
+
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
70 |
+
text = re.sub(_number_re, _expand_number, text)
|
71 |
+
return text
|
72 |
+
|
73 |
+
# Regular expression matching whitespace:
|
74 |
+
_whitespace_re = re.compile(r'\s+')
|
75 |
+
|
76 |
+
# List of (regular expression, replacement) pairs for abbreviations:
|
77 |
+
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
|
78 |
+
('mrs', 'misess'),
|
79 |
+
('mr', 'mister'),
|
80 |
+
('dr', 'doctor'),
|
81 |
+
('st', 'saint'),
|
82 |
+
('co', 'company'),
|
83 |
+
('jr', 'junior'),
|
84 |
+
('maj', 'major'),
|
85 |
+
('gen', 'general'),
|
86 |
+
('drs', 'doctors'),
|
87 |
+
('rev', 'reverend'),
|
88 |
+
('lt', 'lieutenant'),
|
89 |
+
('hon', 'honorable'),
|
90 |
+
('sgt', 'sergeant'),
|
91 |
+
('capt', 'captain'),
|
92 |
+
('esq', 'esquire'),
|
93 |
+
('ltd', 'limited'),
|
94 |
+
('col', 'colonel'),
|
95 |
+
('ft', 'fort'),
|
96 |
+
]]
|
97 |
+
|
98 |
+
|
99 |
+
def expand_abbreviations(text):
|
100 |
+
for regex, replacement in _abbreviations:
|
101 |
+
text = re.sub(regex, replacement, text)
|
102 |
+
return text
|
103 |
+
|
104 |
+
|
105 |
+
def expand_numbers(text):
|
106 |
+
return normalize_numbers(text)
|
107 |
+
|
108 |
+
|
109 |
+
def lowercase(text):
|
110 |
+
return text.lower()
|
111 |
+
|
112 |
+
|
113 |
+
def collapse_whitespace(text):
|
114 |
+
return re.sub(_whitespace_re, ' ', text)
|
115 |
+
|
116 |
+
|
117 |
+
def convert_to_ascii(text):
|
118 |
+
return unidecode(text)
|
119 |
+
|
120 |
+
|
121 |
+
def basic_cleaners(text):
|
122 |
+
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
|
123 |
+
text = lowercase(text)
|
124 |
+
text = collapse_whitespace(text)
|
125 |
+
return text
|
126 |
+
|
127 |
+
|
128 |
+
def transliteration_cleaners(text):
|
129 |
+
'''Pipeline for non-English text that transliterates to ASCII.'''
|
130 |
+
text = convert_to_ascii(text)
|
131 |
+
text = lowercase(text)
|
132 |
+
text = collapse_whitespace(text)
|
133 |
+
return text
|
134 |
+
|
135 |
+
|
136 |
+
def english_cleaners(text):
|
137 |
+
'''Pipeline for English text, including number and abbreviation expansion.'''
|
138 |
+
text = convert_to_ascii(text)
|
139 |
+
text = lowercase(text)
|
140 |
+
text = expand_numbers(text)
|
141 |
+
text = expand_abbreviations(text)
|
142 |
+
text = collapse_whitespace(text)
|
143 |
+
return text
|
maha_tts/text/symbols.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from maha_tts.config import config
|
3 |
+
|
4 |
+
labels=" abcdefghijklmnopqrstuvwxyz.,:;'()?!\""
|
5 |
+
labels=" !\"'(),-.:;?[]abcdefghijklmnopqrstuvwxyzàâèéêü’“”"
|
6 |
+
labels= [i for i in labels]
|
7 |
+
|
8 |
+
text_labels = [i for i in labels]
|
9 |
+
text_labels+='<S>','<E>','<PAD>'
|
10 |
+
|
11 |
+
code_labels= [str(i) for i in range(config.semantic_model_centroids)]
|
12 |
+
labels+=code_labels
|
13 |
+
code_labels+='<SST>','<EST>','<PAD>'
|
14 |
+
|
15 |
+
labels+='<S>','<E>','<SST>','<EST>','<PAD>'
|
16 |
+
|
17 |
+
tok_enc = {j:i for i,j in enumerate(labels)}
|
18 |
+
tok_dec = {i:j for i,j in enumerate(labels)}
|
19 |
+
|
20 |
+
#text encdec
|
21 |
+
text_enc = {j:i for i,j in enumerate(text_labels)}
|
22 |
+
text_dec = {i:j for i,j in enumerate(text_labels)}
|
23 |
+
|
24 |
+
#code encdec
|
25 |
+
code_enc = {j:i for i,j in enumerate(code_labels)}
|
26 |
+
code_dec = {i:j for i,j in enumerate(code_labels)}
|
27 |
+
|
28 |
+
# print('length of the labels: ',len(labels))
|
maha_tts/utils/__init__.py
ADDED
File without changes
|
maha_tts/utils/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (179 Bytes). View file
|
|
maha_tts/utils/__pycache__/audio.cpython-311.pyc
ADDED
Binary file (5.3 kB). View file
|
|
maha_tts/utils/__pycache__/diffusion.cpython-311.pyc
ADDED
Binary file (58.7 kB). View file
|
|
maha_tts/utils/__pycache__/stft.cpython-311.pyc
ADDED
Binary file (6.9 kB). View file
|
|
maha_tts/utils/audio.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import librosa.util as librosa_util
|
4 |
+
|
5 |
+
from scipy.signal import get_window
|
6 |
+
from scipy.io.wavfile import read
|
7 |
+
from maha_tts.config import config
|
8 |
+
|
9 |
+
TACOTRON_MEL_MAX = 2.3143386840820312
|
10 |
+
TACOTRON_MEL_MIN = -11.512925148010254
|
11 |
+
|
12 |
+
|
13 |
+
def denormalize_tacotron_mel(norm_mel):
|
14 |
+
return ((norm_mel+1)/2)*(TACOTRON_MEL_MAX-TACOTRON_MEL_MIN)+TACOTRON_MEL_MIN
|
15 |
+
|
16 |
+
|
17 |
+
def normalize_tacotron_mel(mel):
|
18 |
+
return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1
|
19 |
+
|
20 |
+
|
21 |
+
def get_mask_from_lengths(lengths, max_len=None):
|
22 |
+
if not max_len:
|
23 |
+
max_len = torch.max(lengths).item()
|
24 |
+
ids = torch.arange(0, max_len, device=lengths.device, dtype=torch.long)
|
25 |
+
mask = (ids < lengths.unsqueeze(1)).bool()
|
26 |
+
return mask
|
27 |
+
|
28 |
+
|
29 |
+
def get_mask(lengths, max_len=None):
|
30 |
+
if not max_len:
|
31 |
+
max_len = torch.max(lengths).item()
|
32 |
+
lens = torch.arange(max_len,)
|
33 |
+
mask = lens[:max_len].unsqueeze(0) < lengths.unsqueeze(1)
|
34 |
+
return mask
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
39 |
+
"""
|
40 |
+
PARAMS
|
41 |
+
------
|
42 |
+
C: compression factor
|
43 |
+
"""
|
44 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
45 |
+
|
46 |
+
|
47 |
+
def dynamic_range_decompression(x, C=1):
|
48 |
+
"""
|
49 |
+
PARAMS
|
50 |
+
------
|
51 |
+
C: compression factor used to compress
|
52 |
+
"""
|
53 |
+
return torch.exp(x) / C
|
54 |
+
|
55 |
+
|
56 |
+
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
|
57 |
+
n_fft=800, dtype=np.float32, norm=None):
|
58 |
+
"""
|
59 |
+
# from librosa 0.6
|
60 |
+
Compute the sum-square envelope of a window function at a given hop length.
|
61 |
+
This is used to estimate modulation effects induced by windowing
|
62 |
+
observations in short-time fourier transforms.
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
window : string, tuple, number, callable, or list-like
|
66 |
+
Window specification, as in `get_window`
|
67 |
+
n_frames : int > 0
|
68 |
+
The number of analysis frames
|
69 |
+
hop_length : int > 0
|
70 |
+
The number of samples to advance between frames
|
71 |
+
win_length : [optional]
|
72 |
+
The length of the window function. By default, this matches `n_fft`.
|
73 |
+
n_fft : int > 0
|
74 |
+
The length of each analysis frame.
|
75 |
+
dtype : np.dtype
|
76 |
+
The data type of the output
|
77 |
+
Returns
|
78 |
+
-------
|
79 |
+
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
|
80 |
+
The sum-squared envelope of the window function
|
81 |
+
"""
|
82 |
+
if win_length is None:
|
83 |
+
win_length = n_fft
|
84 |
+
|
85 |
+
n = n_fft + hop_length * (n_frames - 1)
|
86 |
+
x = np.zeros(n, dtype=dtype)
|
87 |
+
|
88 |
+
# Compute the squared window at the desired length
|
89 |
+
win_sq = get_window(window, win_length, fftbins=True)
|
90 |
+
win_sq = librosa_util.normalize(win_sq, norm=norm)**2
|
91 |
+
win_sq = librosa_util.pad_center(win_sq, size=n_fft)
|
92 |
+
|
93 |
+
# Fill the envelope
|
94 |
+
for i in range(n_frames):
|
95 |
+
sample = i * hop_length
|
96 |
+
x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
|
97 |
+
return x
|
98 |
+
|
99 |
+
def load_wav_to_torch(full_path):
|
100 |
+
sampling_rate, data = read(full_path,)
|
101 |
+
return torch.FloatTensor(data), sampling_rate
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == "__main__":
|
106 |
+
lens = torch.tensor([2, 3, 7, 5, 4])
|
107 |
+
mask = get_mask(lens)
|
108 |
+
print(mask)
|
109 |
+
print(mask.shape)
|
maha_tts/utils/diffusion.py
ADDED
@@ -0,0 +1,1283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copied from Tortoise-tts
|
3 |
+
########################################
|
4 |
+
This is an almost carbon copy of gaussian_diffusion.py from OpenAI's ImprovedDiffusion repo, which itself:
|
5 |
+
|
6 |
+
This code started out as a PyTorch port of Ho et al's diffusion models:
|
7 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
|
8 |
+
|
9 |
+
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
|
10 |
+
########################################
|
11 |
+
"""
|
12 |
+
|
13 |
+
import enum
|
14 |
+
import math
|
15 |
+
import torch
|
16 |
+
import torch as th
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import numpy as np
|
19 |
+
from tqdm import tqdm
|
20 |
+
|
21 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
22 |
+
"""
|
23 |
+
Compute the KL divergence between two gaussians.
|
24 |
+
|
25 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
26 |
+
scalars, among other use cases.
|
27 |
+
"""
|
28 |
+
tensor = None
|
29 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
30 |
+
if isinstance(obj, th.Tensor):
|
31 |
+
tensor = obj
|
32 |
+
break
|
33 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
34 |
+
|
35 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
36 |
+
# Tensors, but it does not work for th.exp().
|
37 |
+
logvar1, logvar2 = [
|
38 |
+
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
39 |
+
for x in (logvar1, logvar2)
|
40 |
+
]
|
41 |
+
|
42 |
+
return 0.5 * (
|
43 |
+
-1.0
|
44 |
+
+ logvar2
|
45 |
+
- logvar1
|
46 |
+
+ th.exp(logvar1 - logvar2)
|
47 |
+
+ ((mean1 - mean2) ** 2) * th.exp(-logvar2)
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
def approx_standard_normal_cdf(x):
|
52 |
+
"""
|
53 |
+
A fast approximation of the cumulative distribution function of the
|
54 |
+
standard normal.
|
55 |
+
"""
|
56 |
+
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
57 |
+
|
58 |
+
|
59 |
+
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
60 |
+
"""
|
61 |
+
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
62 |
+
given image.
|
63 |
+
|
64 |
+
:param x: the target images. It is assumed that this was uint8 values,
|
65 |
+
rescaled to the range [-1, 1].
|
66 |
+
:param means: the Gaussian mean Tensor.
|
67 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
68 |
+
:return: a tensor like x of log probabilities (in nats).
|
69 |
+
"""
|
70 |
+
assert x.shape == means.shape == log_scales.shape
|
71 |
+
centered_x = x - means
|
72 |
+
inv_stdv = th.exp(-log_scales)
|
73 |
+
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
74 |
+
cdf_plus = approx_standard_normal_cdf(plus_in)
|
75 |
+
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
76 |
+
cdf_min = approx_standard_normal_cdf(min_in)
|
77 |
+
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
78 |
+
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
79 |
+
cdf_delta = cdf_plus - cdf_min
|
80 |
+
log_probs = th.where(
|
81 |
+
x < -0.999,
|
82 |
+
log_cdf_plus,
|
83 |
+
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
|
84 |
+
)
|
85 |
+
assert log_probs.shape == x.shape
|
86 |
+
return log_probs
|
87 |
+
|
88 |
+
|
89 |
+
def mean_flat(tensor):
|
90 |
+
"""
|
91 |
+
Take the mean over all non-batch dimensions.
|
92 |
+
"""
|
93 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
94 |
+
|
95 |
+
|
96 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
97 |
+
"""
|
98 |
+
Get a pre-defined beta schedule for the given name.
|
99 |
+
|
100 |
+
The beta schedule library consists of beta schedules which remain similar
|
101 |
+
in the limit of num_diffusion_timesteps.
|
102 |
+
Beta schedules may be added, but should not be removed or changed once
|
103 |
+
they are committed to maintain backwards compatibility.
|
104 |
+
"""
|
105 |
+
if schedule_name == "linear":
|
106 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
107 |
+
# diffusion steps.
|
108 |
+
scale = 1000 / num_diffusion_timesteps
|
109 |
+
beta_start = scale * 0.0001
|
110 |
+
beta_end = scale * 0.02
|
111 |
+
return np.linspace(
|
112 |
+
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
|
113 |
+
)
|
114 |
+
elif schedule_name == "cosine":
|
115 |
+
return betas_for_alpha_bar(
|
116 |
+
num_diffusion_timesteps,
|
117 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
121 |
+
|
122 |
+
|
123 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
124 |
+
"""
|
125 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
126 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
127 |
+
|
128 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
129 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
130 |
+
produces the cumulative product of (1-beta) up to that
|
131 |
+
part of the diffusion process.
|
132 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
133 |
+
prevent singularities.
|
134 |
+
"""
|
135 |
+
betas = []
|
136 |
+
for i in range(num_diffusion_timesteps):
|
137 |
+
t1 = i / num_diffusion_timesteps
|
138 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
139 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
140 |
+
return np.array(betas)
|
141 |
+
|
142 |
+
|
143 |
+
class ModelMeanType(enum.Enum):
|
144 |
+
"""
|
145 |
+
Which type of output the model predicts.
|
146 |
+
"""
|
147 |
+
|
148 |
+
PREVIOUS_X = 'previous_x' # the model predicts x_{t-1}
|
149 |
+
START_X = 'start_x' # the model predicts x_0
|
150 |
+
EPSILON = 'epsilon' # the model predicts epsilon
|
151 |
+
|
152 |
+
|
153 |
+
class ModelVarType(enum.Enum):
|
154 |
+
"""
|
155 |
+
What is used as the model's output variance.
|
156 |
+
|
157 |
+
The LEARNED_RANGE option has been added to allow the model to predict
|
158 |
+
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
159 |
+
"""
|
160 |
+
|
161 |
+
LEARNED = 'learned'
|
162 |
+
FIXED_SMALL = 'fixed_small'
|
163 |
+
FIXED_LARGE = 'fixed_large'
|
164 |
+
LEARNED_RANGE = 'learned_range'
|
165 |
+
|
166 |
+
|
167 |
+
class LossType(enum.Enum):
|
168 |
+
MSE = 'mse' # use raw MSE loss (and KL when learning variances)
|
169 |
+
RESCALED_MSE = 'rescaled_mse' # use raw MSE loss (with RESCALED_KL when learning variances)
|
170 |
+
KL = 'kl' # use the variational lower-bound
|
171 |
+
RESCALED_KL = 'rescaled_kl' # like KL, but rescale to estimate the full VLB
|
172 |
+
|
173 |
+
def is_vb(self):
|
174 |
+
return self == LossType.KL or self == LossType.RESCALED_KL
|
175 |
+
|
176 |
+
|
177 |
+
class GaussianDiffusion:
|
178 |
+
"""
|
179 |
+
Utilities for training and sampling diffusion models.
|
180 |
+
|
181 |
+
Ported directly from here, and then adapted over time to further experimentation.
|
182 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
183 |
+
|
184 |
+
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
185 |
+
starting at T and going to 1.
|
186 |
+
:param model_mean_type: a ModelMeanType determining what the model outputs.
|
187 |
+
:param model_var_type: a ModelVarType determining how variance is output.
|
188 |
+
:param loss_type: a LossType determining the loss function to use.
|
189 |
+
:param rescale_timesteps: if True, pass floating point timesteps into the
|
190 |
+
model so that they are always scaled like in the
|
191 |
+
original paper (0 to 1000).
|
192 |
+
"""
|
193 |
+
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
*,
|
197 |
+
betas,
|
198 |
+
model_mean_type,
|
199 |
+
model_var_type,
|
200 |
+
loss_type,
|
201 |
+
rescale_timesteps=False,
|
202 |
+
conditioning_free=False,
|
203 |
+
conditioning_free_k=1,
|
204 |
+
ramp_conditioning_free=True,
|
205 |
+
):
|
206 |
+
self.model_mean_type = ModelMeanType(model_mean_type)
|
207 |
+
self.model_var_type = ModelVarType(model_var_type)
|
208 |
+
self.loss_type = LossType(loss_type)
|
209 |
+
self.rescale_timesteps = rescale_timesteps
|
210 |
+
self.conditioning_free = conditioning_free
|
211 |
+
self.conditioning_free_k = conditioning_free_k
|
212 |
+
self.ramp_conditioning_free = ramp_conditioning_free
|
213 |
+
|
214 |
+
# Use float64 for accuracy.
|
215 |
+
betas = np.array(betas, dtype=np.float64)
|
216 |
+
self.betas = betas
|
217 |
+
assert len(betas.shape) == 1, "betas must be 1-D"
|
218 |
+
assert (betas > 0).all() and (betas <= 1).all()
|
219 |
+
|
220 |
+
self.num_timesteps = int(betas.shape[0])
|
221 |
+
|
222 |
+
alphas = 1.0 - betas
|
223 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
224 |
+
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
225 |
+
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
226 |
+
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
|
227 |
+
|
228 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
229 |
+
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
230 |
+
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
231 |
+
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
232 |
+
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
233 |
+
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
|
234 |
+
|
235 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
236 |
+
self.posterior_variance = (
|
237 |
+
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
238 |
+
)
|
239 |
+
# log calculation clipped because the posterior variance is 0 at the
|
240 |
+
# beginning of the diffusion chain.
|
241 |
+
self.posterior_log_variance_clipped = np.log(
|
242 |
+
np.append(self.posterior_variance[1], self.posterior_variance[1:])
|
243 |
+
)
|
244 |
+
self.posterior_mean_coef1 = (
|
245 |
+
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
246 |
+
)
|
247 |
+
self.posterior_mean_coef2 = (
|
248 |
+
(1.0 - self.alphas_cumprod_prev)
|
249 |
+
* np.sqrt(alphas)
|
250 |
+
/ (1.0 - self.alphas_cumprod)
|
251 |
+
)
|
252 |
+
|
253 |
+
def q_mean_variance(self, x_start, t):
|
254 |
+
"""
|
255 |
+
Get the distribution q(x_t | x_0).
|
256 |
+
|
257 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
258 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
259 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape. of the sample at timestep t
|
260 |
+
"""
|
261 |
+
mean = (
|
262 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
263 |
+
)
|
264 |
+
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
265 |
+
log_variance = _extract_into_tensor(
|
266 |
+
self.log_one_minus_alphas_cumprod, t, x_start.shape
|
267 |
+
)
|
268 |
+
return mean, variance, log_variance
|
269 |
+
|
270 |
+
def q_sample(self, x_start, t, noise=None):
|
271 |
+
"""
|
272 |
+
Diffuse the data for a given number of diffusion steps.
|
273 |
+
|
274 |
+
In other words, sample from q(x_t | x_0).
|
275 |
+
|
276 |
+
:param x_start: the initial data batch.
|
277 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
278 |
+
:param noise: if specified, the split-out normal noise.
|
279 |
+
:return: A noisy version of x_start.
|
280 |
+
"""
|
281 |
+
if noise is None:
|
282 |
+
noise = th.randn_like(x_start)
|
283 |
+
assert noise.shape == x_start.shape
|
284 |
+
return (
|
285 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
286 |
+
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
287 |
+
* noise
|
288 |
+
)
|
289 |
+
|
290 |
+
def q_posterior_mean_variance(self, x_start, x_t, t):
|
291 |
+
"""
|
292 |
+
Compute the mean and variance of the diffusion posterior:
|
293 |
+
|
294 |
+
q(x_{t-1} | x_t, x_0)
|
295 |
+
|
296 |
+
"""
|
297 |
+
assert x_start.shape == x_t.shape
|
298 |
+
posterior_mean = (
|
299 |
+
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
300 |
+
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
301 |
+
)
|
302 |
+
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
303 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
304 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
305 |
+
)
|
306 |
+
assert (
|
307 |
+
posterior_mean.shape[0]
|
308 |
+
== posterior_variance.shape[0]
|
309 |
+
== posterior_log_variance_clipped.shape[0]
|
310 |
+
== x_start.shape[0]
|
311 |
+
)
|
312 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
313 |
+
|
314 |
+
def p_mean_variance(
|
315 |
+
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
|
316 |
+
):
|
317 |
+
"""
|
318 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
319 |
+
the initial x, x_0.
|
320 |
+
|
321 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
322 |
+
as input.
|
323 |
+
:param x: the [N x C x ...] tensor at time t.
|
324 |
+
:param t: a 1-D Tensor of timesteps.
|
325 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
326 |
+
:param denoised_fn: if not None, a function which applies to the
|
327 |
+
x_start prediction before it is used to sample. Applies before
|
328 |
+
clip_denoised.
|
329 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
330 |
+
pass to the model. This can be used for conditioning.
|
331 |
+
:return: a dict with the following keys:
|
332 |
+
- 'mean': the model mean output.
|
333 |
+
- 'variance': the model variance output.
|
334 |
+
- 'log_variance': the log of 'variance'.
|
335 |
+
- 'pred_xstart': the prediction for x_0.
|
336 |
+
"""
|
337 |
+
if model_kwargs is None:
|
338 |
+
model_kwargs = {}
|
339 |
+
|
340 |
+
B, C = x.shape[:2]
|
341 |
+
assert t.shape == (B,)
|
342 |
+
model_output = model(x, self._scale_timesteps(t), **model_kwargs)
|
343 |
+
if self.conditioning_free:
|
344 |
+
model_output_no_conditioning = model(x, self._scale_timesteps(t), conditioning_free=True, **model_kwargs)
|
345 |
+
|
346 |
+
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
|
347 |
+
assert model_output.shape == (B, C * 2, *x.shape[2:])
|
348 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
349 |
+
if self.conditioning_free:
|
350 |
+
model_output_no_conditioning, _ = th.split(model_output_no_conditioning, C, dim=1)
|
351 |
+
if self.model_var_type == ModelVarType.LEARNED:
|
352 |
+
model_log_variance = model_var_values
|
353 |
+
model_variance = th.exp(model_log_variance)
|
354 |
+
else:
|
355 |
+
min_log = _extract_into_tensor(
|
356 |
+
self.posterior_log_variance_clipped, t, x.shape
|
357 |
+
)
|
358 |
+
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
|
359 |
+
# The model_var_values is [-1, 1] for [min_var, max_var].
|
360 |
+
frac = (model_var_values + 1) / 2
|
361 |
+
model_log_variance = frac * max_log + (1 - frac) * min_log
|
362 |
+
model_variance = th.exp(model_log_variance)
|
363 |
+
else:
|
364 |
+
model_variance, model_log_variance = {
|
365 |
+
# for fixedlarge, we set the initial (log-)variance like so
|
366 |
+
# to get a better decoder log likelihood.
|
367 |
+
ModelVarType.FIXED_LARGE: (
|
368 |
+
np.append(self.posterior_variance[1], self.betas[1:]),
|
369 |
+
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
|
370 |
+
),
|
371 |
+
ModelVarType.FIXED_SMALL: (
|
372 |
+
self.posterior_variance,
|
373 |
+
self.posterior_log_variance_clipped,
|
374 |
+
),
|
375 |
+
}[self.model_var_type]
|
376 |
+
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
377 |
+
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
|
378 |
+
|
379 |
+
if self.conditioning_free:
|
380 |
+
if self.ramp_conditioning_free:
|
381 |
+
assert t.shape[0] == 1 # This should only be used in inference.
|
382 |
+
cfk = self.conditioning_free_k * (1 - self._scale_timesteps(t)[0].item() / self.num_timesteps)
|
383 |
+
else:
|
384 |
+
cfk = self.conditioning_free_k
|
385 |
+
model_output = (1 + cfk) * model_output - cfk * model_output_no_conditioning
|
386 |
+
|
387 |
+
def process_xstart(x):
|
388 |
+
if denoised_fn is not None:
|
389 |
+
x = denoised_fn(x)
|
390 |
+
if clip_denoised:
|
391 |
+
return x.clamp(-1, 1)
|
392 |
+
return x
|
393 |
+
|
394 |
+
if self.model_mean_type == ModelMeanType.PREVIOUS_X:
|
395 |
+
pred_xstart = process_xstart(
|
396 |
+
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
|
397 |
+
)
|
398 |
+
model_mean = model_output
|
399 |
+
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
|
400 |
+
if self.model_mean_type == ModelMeanType.START_X:
|
401 |
+
pred_xstart = process_xstart(model_output)
|
402 |
+
else:
|
403 |
+
pred_xstart = process_xstart(
|
404 |
+
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
|
405 |
+
)
|
406 |
+
model_mean, _, _ = self.q_posterior_mean_variance(
|
407 |
+
x_start=pred_xstart, x_t=x, t=t
|
408 |
+
)
|
409 |
+
else:
|
410 |
+
raise NotImplementedError(self.model_mean_type)
|
411 |
+
|
412 |
+
assert (
|
413 |
+
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
414 |
+
)
|
415 |
+
return {
|
416 |
+
"mean": model_mean,
|
417 |
+
"variance": model_variance,
|
418 |
+
"log_variance": model_log_variance,
|
419 |
+
"pred_xstart": pred_xstart,
|
420 |
+
}
|
421 |
+
|
422 |
+
def _predict_xstart_from_eps(self, x_t, t, eps):
|
423 |
+
assert x_t.shape == eps.shape
|
424 |
+
return (
|
425 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
426 |
+
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
427 |
+
)
|
428 |
+
|
429 |
+
def _predict_xstart_from_xprev(self, x_t, t, xprev):
|
430 |
+
assert x_t.shape == xprev.shape
|
431 |
+
return ( # (xprev - coef2*x_t) / coef1
|
432 |
+
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
|
433 |
+
- _extract_into_tensor(
|
434 |
+
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
|
435 |
+
)
|
436 |
+
* x_t
|
437 |
+
)
|
438 |
+
|
439 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
440 |
+
return (
|
441 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
442 |
+
- pred_xstart
|
443 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
444 |
+
|
445 |
+
def _scale_timesteps(self, t):
|
446 |
+
if self.rescale_timesteps:
|
447 |
+
return t.float() * (1000.0 / self.num_timesteps)
|
448 |
+
return t
|
449 |
+
|
450 |
+
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
451 |
+
"""
|
452 |
+
Compute the mean for the previous step, given a function cond_fn that
|
453 |
+
computes the gradient of a conditional log probability with respect to
|
454 |
+
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
455 |
+
condition on y.
|
456 |
+
|
457 |
+
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
458 |
+
"""
|
459 |
+
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs)
|
460 |
+
new_mean = (
|
461 |
+
p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
|
462 |
+
)
|
463 |
+
return new_mean
|
464 |
+
|
465 |
+
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
466 |
+
"""
|
467 |
+
Compute what the p_mean_variance output would have been, should the
|
468 |
+
model's score function be conditioned by cond_fn.
|
469 |
+
|
470 |
+
See condition_mean() for details on cond_fn.
|
471 |
+
|
472 |
+
Unlike condition_mean(), this instead uses the conditioning strategy
|
473 |
+
from Song et al (2020).
|
474 |
+
"""
|
475 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
476 |
+
|
477 |
+
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
478 |
+
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(
|
479 |
+
x, self._scale_timesteps(t), **model_kwargs
|
480 |
+
)
|
481 |
+
|
482 |
+
out = p_mean_var.copy()
|
483 |
+
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
484 |
+
out["mean"], _, _ = self.q_posterior_mean_variance(
|
485 |
+
x_start=out["pred_xstart"], x_t=x, t=t
|
486 |
+
)
|
487 |
+
return out
|
488 |
+
|
489 |
+
def p_sample(
|
490 |
+
self,
|
491 |
+
model,
|
492 |
+
x,
|
493 |
+
t,
|
494 |
+
clip_denoised=True,
|
495 |
+
denoised_fn=None,
|
496 |
+
cond_fn=None,
|
497 |
+
model_kwargs=None,
|
498 |
+
):
|
499 |
+
"""
|
500 |
+
Sample x_{t-1} from the model at the given timestep.
|
501 |
+
|
502 |
+
:param model: the model to sample from.
|
503 |
+
:param x: the current tensor at x_{t-1}.
|
504 |
+
:param t: the value of t, starting at 0 for the first diffusion step.
|
505 |
+
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
506 |
+
:param denoised_fn: if not None, a function which applies to the
|
507 |
+
x_start prediction before it is used to sample.
|
508 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
509 |
+
similarly to the model.
|
510 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
511 |
+
pass to the model. This can be used for conditioning.
|
512 |
+
:return: a dict containing the following keys:
|
513 |
+
- 'sample': a random sample from the model.
|
514 |
+
- 'pred_xstart': a prediction of x_0.
|
515 |
+
"""
|
516 |
+
out = self.p_mean_variance(
|
517 |
+
model,
|
518 |
+
x,
|
519 |
+
t,
|
520 |
+
clip_denoised=clip_denoised,
|
521 |
+
denoised_fn=denoised_fn,
|
522 |
+
model_kwargs=model_kwargs,
|
523 |
+
)
|
524 |
+
noise = th.randn_like(x)
|
525 |
+
nonzero_mask = (
|
526 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
527 |
+
) # no noise when t == 0
|
528 |
+
if cond_fn is not None:
|
529 |
+
out["mean"] = self.condition_mean(
|
530 |
+
cond_fn, out, x, t, model_kwargs=model_kwargs
|
531 |
+
)
|
532 |
+
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
|
533 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
534 |
+
|
535 |
+
def p_sample_loop(
|
536 |
+
self,
|
537 |
+
model,
|
538 |
+
shape,
|
539 |
+
noise=None,
|
540 |
+
clip_denoised=True,
|
541 |
+
denoised_fn=None,
|
542 |
+
cond_fn=None,
|
543 |
+
model_kwargs=None,
|
544 |
+
device=None,
|
545 |
+
progress=False,
|
546 |
+
):
|
547 |
+
"""
|
548 |
+
Generate samples from the model.
|
549 |
+
|
550 |
+
:param model: the model module.
|
551 |
+
:param shape: the shape of the samples, (N, C, H, W).
|
552 |
+
:param noise: if specified, the noise from the encoder to sample.
|
553 |
+
Should be of the same shape as `shape`.
|
554 |
+
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
555 |
+
:param denoised_fn: if not None, a function which applies to the
|
556 |
+
x_start prediction before it is used to sample.
|
557 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
558 |
+
similarly to the model.
|
559 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
560 |
+
pass to the model. This can be used for conditioning.
|
561 |
+
:param device: if specified, the device to create the samples on.
|
562 |
+
If not specified, use a model parameter's device.
|
563 |
+
:param progress: if True, show a tqdm progress bar.
|
564 |
+
:return: a non-differentiable batch of samples.
|
565 |
+
"""
|
566 |
+
final = None
|
567 |
+
for sample in self.p_sample_loop_progressive(
|
568 |
+
model,
|
569 |
+
shape,
|
570 |
+
noise=noise,
|
571 |
+
clip_denoised=clip_denoised,
|
572 |
+
denoised_fn=denoised_fn,
|
573 |
+
cond_fn=cond_fn,
|
574 |
+
model_kwargs=model_kwargs,
|
575 |
+
device=device,
|
576 |
+
progress=progress,
|
577 |
+
):
|
578 |
+
final = sample
|
579 |
+
return final["sample"]
|
580 |
+
|
581 |
+
def p_sample_loop_progressive(
|
582 |
+
self,
|
583 |
+
model,
|
584 |
+
shape,
|
585 |
+
noise=None,
|
586 |
+
clip_denoised=True,
|
587 |
+
denoised_fn=None,
|
588 |
+
cond_fn=None,
|
589 |
+
model_kwargs=None,
|
590 |
+
device=None,
|
591 |
+
progress=False,
|
592 |
+
):
|
593 |
+
"""
|
594 |
+
Generate samples from the model and yield intermediate samples from
|
595 |
+
each timestep of diffusion.
|
596 |
+
|
597 |
+
Arguments are the same as p_sample_loop().
|
598 |
+
Returns a generator over dicts, where each dict is the return value of
|
599 |
+
p_sample().
|
600 |
+
"""
|
601 |
+
if device is None:
|
602 |
+
device = next(model.parameters()).device
|
603 |
+
assert isinstance(shape, (tuple, list))
|
604 |
+
if noise is not None:
|
605 |
+
img = noise
|
606 |
+
else:
|
607 |
+
img = th.randn(*shape, device=device)
|
608 |
+
indices = list(range(self.num_timesteps))[::-1]
|
609 |
+
|
610 |
+
for i in tqdm(indices, disable=not progress):
|
611 |
+
t = th.tensor([i] * shape[0], device=device)
|
612 |
+
with th.no_grad():
|
613 |
+
out = self.p_sample(
|
614 |
+
model,
|
615 |
+
img,
|
616 |
+
t,
|
617 |
+
clip_denoised=clip_denoised,
|
618 |
+
denoised_fn=denoised_fn,
|
619 |
+
cond_fn=cond_fn,
|
620 |
+
model_kwargs=model_kwargs,
|
621 |
+
)
|
622 |
+
yield out
|
623 |
+
img = out["sample"]
|
624 |
+
|
625 |
+
def ddim_sample(
|
626 |
+
self,
|
627 |
+
model,
|
628 |
+
x,
|
629 |
+
t,
|
630 |
+
clip_denoised=True,
|
631 |
+
denoised_fn=None,
|
632 |
+
cond_fn=None,
|
633 |
+
model_kwargs=None,
|
634 |
+
eta=0.0,
|
635 |
+
):
|
636 |
+
"""
|
637 |
+
Sample x_{t-1} from the model using DDIM.
|
638 |
+
|
639 |
+
Same usage as p_sample().
|
640 |
+
"""
|
641 |
+
out = self.p_mean_variance(
|
642 |
+
model,
|
643 |
+
x,
|
644 |
+
t,
|
645 |
+
clip_denoised=clip_denoised,
|
646 |
+
denoised_fn=denoised_fn,
|
647 |
+
model_kwargs=model_kwargs,
|
648 |
+
)
|
649 |
+
if cond_fn is not None:
|
650 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
651 |
+
|
652 |
+
# Usually our model outputs epsilon, but we re-derive it
|
653 |
+
# in case we used x_start or x_prev prediction.
|
654 |
+
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
655 |
+
|
656 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
657 |
+
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
|
658 |
+
sigma = (
|
659 |
+
eta
|
660 |
+
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
|
661 |
+
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
|
662 |
+
)
|
663 |
+
# Equation 12.
|
664 |
+
noise = th.randn_like(x)
|
665 |
+
mean_pred = (
|
666 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
667 |
+
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
|
668 |
+
)
|
669 |
+
nonzero_mask = (
|
670 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
671 |
+
) # no noise when t == 0
|
672 |
+
sample = mean_pred + nonzero_mask * sigma * noise
|
673 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
674 |
+
|
675 |
+
def ddim_reverse_sample(
|
676 |
+
self,
|
677 |
+
model,
|
678 |
+
x,
|
679 |
+
t,
|
680 |
+
clip_denoised=True,
|
681 |
+
denoised_fn=None,
|
682 |
+
model_kwargs=None,
|
683 |
+
eta=0.0,
|
684 |
+
):
|
685 |
+
"""
|
686 |
+
Sample x_{t+1} from the model using DDIM reverse ODE.
|
687 |
+
"""
|
688 |
+
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
689 |
+
out = self.p_mean_variance(
|
690 |
+
model,
|
691 |
+
x,
|
692 |
+
t,
|
693 |
+
clip_denoised=clip_denoised,
|
694 |
+
denoised_fn=denoised_fn,
|
695 |
+
model_kwargs=model_kwargs,
|
696 |
+
)
|
697 |
+
# Usually our model outputs epsilon, but we re-derive it
|
698 |
+
# in case we used x_start or x_prev prediction.
|
699 |
+
eps = (
|
700 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
|
701 |
+
- out["pred_xstart"]
|
702 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
703 |
+
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
|
704 |
+
|
705 |
+
# Equation 12. reversed
|
706 |
+
mean_pred = (
|
707 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_next)
|
708 |
+
+ th.sqrt(1 - alpha_bar_next) * eps
|
709 |
+
)
|
710 |
+
|
711 |
+
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
712 |
+
|
713 |
+
def ddim_sample_loop(
|
714 |
+
self,
|
715 |
+
model,
|
716 |
+
shape,
|
717 |
+
noise=None,
|
718 |
+
clip_denoised=True,
|
719 |
+
denoised_fn=None,
|
720 |
+
cond_fn=None,
|
721 |
+
model_kwargs=None,
|
722 |
+
device=None,
|
723 |
+
progress=False,
|
724 |
+
eta=0.0,
|
725 |
+
):
|
726 |
+
"""
|
727 |
+
Generate samples from the model using DDIM.
|
728 |
+
|
729 |
+
Same usage as p_sample_loop().
|
730 |
+
"""
|
731 |
+
final = None
|
732 |
+
for sample in self.ddim_sample_loop_progressive(
|
733 |
+
model,
|
734 |
+
shape,
|
735 |
+
noise=noise,
|
736 |
+
clip_denoised=clip_denoised,
|
737 |
+
denoised_fn=denoised_fn,
|
738 |
+
cond_fn=cond_fn,
|
739 |
+
model_kwargs=model_kwargs,
|
740 |
+
device=device,
|
741 |
+
progress=progress,
|
742 |
+
eta=eta,
|
743 |
+
):
|
744 |
+
final = sample
|
745 |
+
return final["sample"]
|
746 |
+
|
747 |
+
def ddim_sample_loop_progressive(
|
748 |
+
self,
|
749 |
+
model,
|
750 |
+
shape,
|
751 |
+
noise=None,
|
752 |
+
clip_denoised=True,
|
753 |
+
denoised_fn=None,
|
754 |
+
cond_fn=None,
|
755 |
+
model_kwargs=None,
|
756 |
+
device=None,
|
757 |
+
progress=False,
|
758 |
+
eta=0.0,
|
759 |
+
):
|
760 |
+
"""
|
761 |
+
Use DDIM to sample from the model and yield intermediate samples from
|
762 |
+
each timestep of DDIM.
|
763 |
+
|
764 |
+
Same usage as p_sample_loop_progressive().
|
765 |
+
"""
|
766 |
+
if device is None:
|
767 |
+
device = next(model.parameters()).device
|
768 |
+
assert isinstance(shape, (tuple, list))
|
769 |
+
if noise is not None:
|
770 |
+
img = noise
|
771 |
+
else:
|
772 |
+
img = th.randn(*shape, device=device)
|
773 |
+
indices = list(range(self.num_timesteps))[::-1]
|
774 |
+
|
775 |
+
if progress:
|
776 |
+
# Lazy import so that we don't depend on tqdm.
|
777 |
+
from tqdm.auto import tqdm
|
778 |
+
|
779 |
+
indices = tqdm(indices, disable=not progress)
|
780 |
+
|
781 |
+
for i in indices:
|
782 |
+
t = th.tensor([i] * shape[0], device=device)
|
783 |
+
with th.no_grad():
|
784 |
+
out = self.ddim_sample(
|
785 |
+
model,
|
786 |
+
img,
|
787 |
+
t,
|
788 |
+
clip_denoised=clip_denoised,
|
789 |
+
denoised_fn=denoised_fn,
|
790 |
+
cond_fn=cond_fn,
|
791 |
+
model_kwargs=model_kwargs,
|
792 |
+
eta=eta,
|
793 |
+
)
|
794 |
+
yield out
|
795 |
+
img = out["sample"]
|
796 |
+
|
797 |
+
def _vb_terms_bpd(
|
798 |
+
self, model, x_start, x_t, t, mask,clip_denoised=True, model_kwargs=None
|
799 |
+
):
|
800 |
+
"""
|
801 |
+
Get a term for the variational lower-bound.
|
802 |
+
|
803 |
+
The resulting units are bits (rather than nats, as one might expect).
|
804 |
+
This allows for comparison to other papers.
|
805 |
+
|
806 |
+
:return: a dict with the following keys:
|
807 |
+
- 'output': a shape [N] tensor of NLLs or KLs.
|
808 |
+
- 'pred_xstart': the x_0 predictions.
|
809 |
+
"""
|
810 |
+
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
811 |
+
x_start=x_start, x_t=x_t, t=t
|
812 |
+
)
|
813 |
+
out = self.p_mean_variance(
|
814 |
+
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
|
815 |
+
)
|
816 |
+
kl = normal_kl(
|
817 |
+
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
|
818 |
+
)
|
819 |
+
|
820 |
+
mask = mask.squeeze(1).float()
|
821 |
+
kl= kl.mean(dim=-2)
|
822 |
+
kl *= mask
|
823 |
+
kl = kl.sum(-1) / mask.sum(-1)
|
824 |
+
kl = kl/np.log(2.0)
|
825 |
+
# kl = mean_flat(kl) / np.log(2.0)
|
826 |
+
# print(kl)
|
827 |
+
decoder_nll = -discretized_gaussian_log_likelihood(
|
828 |
+
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
|
829 |
+
)
|
830 |
+
assert decoder_nll.shape == x_start.shape
|
831 |
+
|
832 |
+
# print(decoder_nll.shape)
|
833 |
+
decoder_nll = decoder_nll.mean(dim=-2)
|
834 |
+
decoder_nll *= mask
|
835 |
+
decoder_nll = decoder_nll.sum(-1) / mask.sum(-1)
|
836 |
+
decoder_nll = decoder_nll/np.log(2.0)
|
837 |
+
# decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
|
838 |
+
# print(decoder_nll)
|
839 |
+
# At the first timestep return the decoder NLL,
|
840 |
+
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
841 |
+
output = th.where((t == 0), decoder_nll, kl)
|
842 |
+
return {"output": output, "pred_xstart": out["pred_xstart"]}
|
843 |
+
|
844 |
+
def training_losses(self, model, x_start, t, mask,model_kwargs=None, noise=None):
|
845 |
+
"""
|
846 |
+
Compute training losses for a single timestep.
|
847 |
+
|
848 |
+
:param model: the model to evaluate loss on.
|
849 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
850 |
+
:param t: a batch of timestep indices.
|
851 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
852 |
+
pass to the model. This can be used for conditioning.
|
853 |
+
:param noise: if specified, the specific Gaussian noise to try to remove.
|
854 |
+
:return: a dict with the key "loss" containing a tensor of shape [N].
|
855 |
+
Some mean or variance settings may also have other keys.
|
856 |
+
"""
|
857 |
+
if model_kwargs is None:
|
858 |
+
model_kwargs = {}
|
859 |
+
if noise is None:
|
860 |
+
noise = th.randn_like(x_start)
|
861 |
+
x_t = self.q_sample(x_start, t, noise=noise)
|
862 |
+
# print(x_t.shape,mask.shape)
|
863 |
+
terms = {}
|
864 |
+
# mask = torch.ones(mask.shape).to(mask.device)
|
865 |
+
|
866 |
+
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
|
867 |
+
# TODO: support multiple model outputs for this mode.
|
868 |
+
terms["loss"] = self._vb_terms_bpd(
|
869 |
+
model=model,
|
870 |
+
x_start=x_start,
|
871 |
+
x_t=x_t,
|
872 |
+
t=t,
|
873 |
+
clip_denoised=False,
|
874 |
+
model_kwargs=model_kwargs,
|
875 |
+
)["output"]
|
876 |
+
if self.loss_type == LossType.RESCALED_KL:
|
877 |
+
terms["loss"] *= self.num_timesteps
|
878 |
+
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
|
879 |
+
# print('timestep : ',self._scale_timesteps(t))
|
880 |
+
model_outputs = model(x_t, self._scale_timesteps(t), **model_kwargs)
|
881 |
+
if isinstance(model_outputs, tuple):
|
882 |
+
model_output = model_outputs[0]
|
883 |
+
terms['extra_outputs'] = model_outputs[1:]
|
884 |
+
else:
|
885 |
+
model_output = model_outputs
|
886 |
+
|
887 |
+
if self.model_var_type in [
|
888 |
+
ModelVarType.LEARNED,
|
889 |
+
ModelVarType.LEARNED_RANGE,
|
890 |
+
]:
|
891 |
+
B, C = x_t.shape[:2]
|
892 |
+
assert model_output.shape == (B, C * 2, *x_t.shape[2:])
|
893 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
894 |
+
# Learn the variance using the variational bound, but don't let
|
895 |
+
# it affect our mean prediction.
|
896 |
+
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
|
897 |
+
terms["vb"] = self._vb_terms_bpd(
|
898 |
+
model=lambda *args, r=frozen_out: r,
|
899 |
+
x_start=x_start,
|
900 |
+
x_t=x_t,
|
901 |
+
t=t,
|
902 |
+
mask=mask,
|
903 |
+
clip_denoised=False,
|
904 |
+
)["output"]
|
905 |
+
if self.loss_type == LossType.RESCALED_MSE:
|
906 |
+
# Divide by 1000 for equivalence with initial implementation.
|
907 |
+
# Without a factor of 1/1000, the VB term hurts the MSE term.
|
908 |
+
# terms["vb"] *= self.num_timesteps / 1000.0
|
909 |
+
terms["vb"] *= 1/1000
|
910 |
+
# print('scaling vb :',self.num_timesteps / 1000.0)
|
911 |
+
|
912 |
+
if self.model_mean_type == ModelMeanType.PREVIOUS_X:
|
913 |
+
target = self.q_posterior_mean_variance(
|
914 |
+
x_start=x_start, x_t=x_t, t=t
|
915 |
+
)[0]
|
916 |
+
x_start_pred = torch.zeros(x_start) # Not supported.
|
917 |
+
elif self.model_mean_type == ModelMeanType.START_X:
|
918 |
+
target = x_start
|
919 |
+
x_start_pred = model_output
|
920 |
+
elif self.model_mean_type == ModelMeanType.EPSILON:
|
921 |
+
target = noise
|
922 |
+
x_start_pred = self._predict_xstart_from_eps(x_t, t, model_output)
|
923 |
+
else:
|
924 |
+
raise NotImplementedError(self.model_mean_type)
|
925 |
+
assert model_output.shape == target.shape == x_start.shape
|
926 |
+
|
927 |
+
mask = mask.squeeze(1).float()
|
928 |
+
|
929 |
+
loss = F.mse_loss(target, model_output, reduction='none').mean(dim=-2)
|
930 |
+
loss *= mask
|
931 |
+
loss = loss.sum(-1) / mask.sum(-1)
|
932 |
+
|
933 |
+
terms["mse"] = loss
|
934 |
+
# terms["mse"] = mean_flat((target - model_output) ** 2)
|
935 |
+
terms["x_start_predicted"] = x_start_pred
|
936 |
+
# print(terms['vb'],terms['mse'])
|
937 |
+
if "vb" in terms:
|
938 |
+
terms["loss"] = terms["mse"] + terms["vb"]
|
939 |
+
else:
|
940 |
+
terms["loss"] = terms["mse"]
|
941 |
+
else:
|
942 |
+
raise NotImplementedError(self.loss_type)
|
943 |
+
|
944 |
+
# print(terms['loss'])
|
945 |
+
# terms["loss"]=terms['loss'].sum()/terms['loss'].shape[0]
|
946 |
+
terms["mse"]=terms['mse'].sum()/terms['mse'].shape[0]
|
947 |
+
terms["vb"]=terms['vb'].sum()/terms['vb'].shape[0]
|
948 |
+
# print(terms['loss'],terms['mse'],terms['vb'])
|
949 |
+
return terms
|
950 |
+
|
951 |
+
def autoregressive_training_losses(self, model, x_start, t, model_output_keys, gd_out_key, model_kwargs=None, noise=None):
|
952 |
+
"""
|
953 |
+
Compute training losses for a single timestep.
|
954 |
+
|
955 |
+
:param model: the model to evaluate loss on.
|
956 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
957 |
+
:param t: a batch of timestep indices.
|
958 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
959 |
+
pass to the model. This can be used for conditioning.
|
960 |
+
:param noise: if specified, the specific Gaussian noise to try to remove.
|
961 |
+
:return: a dict with the key "loss" containing a tensor of shape [N].
|
962 |
+
Some mean or variance settings may also have other keys.
|
963 |
+
"""
|
964 |
+
if model_kwargs is None:
|
965 |
+
model_kwargs = {}
|
966 |
+
if noise is None:
|
967 |
+
noise = th.randn_like(x_start)
|
968 |
+
x_t = self.q_sample(x_start, t, noise=noise)
|
969 |
+
terms = {}
|
970 |
+
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
|
971 |
+
assert False # not currently supported for this type of diffusion.
|
972 |
+
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
|
973 |
+
model_outputs = model(x_t, x_start, self._scale_timesteps(t), **model_kwargs)
|
974 |
+
terms.update({k: o for k, o in zip(model_output_keys, model_outputs)})
|
975 |
+
model_output = terms[gd_out_key]
|
976 |
+
if self.model_var_type in [
|
977 |
+
ModelVarType.LEARNED,
|
978 |
+
ModelVarType.LEARNED_RANGE,
|
979 |
+
]:
|
980 |
+
B, C = x_t.shape[:2]
|
981 |
+
assert model_output.shape == (B, C, 2, *x_t.shape[2:])
|
982 |
+
model_output, model_var_values = model_output[:, :, 0], model_output[:, :, 1]
|
983 |
+
# Learn the variance using the variational bound, but don't let
|
984 |
+
# it affect our mean prediction.
|
985 |
+
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
|
986 |
+
terms["vb"] = self._vb_terms_bpd(
|
987 |
+
model=lambda *args, r=frozen_out: r,
|
988 |
+
x_start=x_start,
|
989 |
+
x_t=x_t,
|
990 |
+
t=t,
|
991 |
+
clip_denoised=False,
|
992 |
+
)["output"]
|
993 |
+
if self.loss_type == LossType.RESCALED_MSE:
|
994 |
+
# Divide by 1000 for equivalence with initial implementation.
|
995 |
+
# Without a factor of 1/1000, the VB term hurts the MSE term.
|
996 |
+
terms["vb"] *= self.num_timesteps / 1000.0
|
997 |
+
|
998 |
+
if self.model_mean_type == ModelMeanType.PREVIOUS_X:
|
999 |
+
target = self.q_posterior_mean_variance(
|
1000 |
+
x_start=x_start, x_t=x_t, t=t
|
1001 |
+
)[0]
|
1002 |
+
x_start_pred = torch.zeros(x_start) # Not supported.
|
1003 |
+
elif self.model_mean_type == ModelMeanType.START_X:
|
1004 |
+
target = x_start
|
1005 |
+
x_start_pred = model_output
|
1006 |
+
elif self.model_mean_type == ModelMeanType.EPSILON:
|
1007 |
+
target = noise
|
1008 |
+
x_start_pred = self._predict_xstart_from_eps(x_t, t, model_output)
|
1009 |
+
else:
|
1010 |
+
raise NotImplementedError(self.model_mean_type)
|
1011 |
+
assert model_output.shape == target.shape == x_start.shape
|
1012 |
+
terms["mse"] = mean_flat((target - model_output) ** 2)
|
1013 |
+
terms["x_start_predicted"] = x_start_pred
|
1014 |
+
if "vb" in terms:
|
1015 |
+
terms["loss"] = terms["mse"] + terms["vb"]
|
1016 |
+
else:
|
1017 |
+
terms["loss"] = terms["mse"]
|
1018 |
+
else:
|
1019 |
+
raise NotImplementedError(self.loss_type)
|
1020 |
+
|
1021 |
+
return terms
|
1022 |
+
|
1023 |
+
def _prior_bpd(self, x_start):
|
1024 |
+
"""
|
1025 |
+
Get the prior KL term for the variational lower-bound, measured in
|
1026 |
+
bits-per-dim.
|
1027 |
+
|
1028 |
+
This term can't be optimized, as it only depends on the encoder.
|
1029 |
+
|
1030 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1031 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
1032 |
+
"""
|
1033 |
+
batch_size = x_start.shape[0]
|
1034 |
+
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1035 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1036 |
+
kl_prior = normal_kl(
|
1037 |
+
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
|
1038 |
+
)
|
1039 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1040 |
+
|
1041 |
+
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
|
1042 |
+
"""
|
1043 |
+
Compute the entire variational lower-bound, measured in bits-per-dim,
|
1044 |
+
as well as other related quantities.
|
1045 |
+
|
1046 |
+
:param model: the model to evaluate loss on.
|
1047 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1048 |
+
:param clip_denoised: if True, clip denoised samples.
|
1049 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
1050 |
+
pass to the model. This can be used for conditioning.
|
1051 |
+
|
1052 |
+
:return: a dict containing the following keys:
|
1053 |
+
- total_bpd: the total variational lower-bound, per batch element.
|
1054 |
+
- prior_bpd: the prior term in the lower-bound.
|
1055 |
+
- vb: an [N x T] tensor of terms in the lower-bound.
|
1056 |
+
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
1057 |
+
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
1058 |
+
"""
|
1059 |
+
device = x_start.device
|
1060 |
+
batch_size = x_start.shape[0]
|
1061 |
+
|
1062 |
+
vb = []
|
1063 |
+
xstart_mse = []
|
1064 |
+
mse = []
|
1065 |
+
for t in list(range(self.num_timesteps))[::-1]:
|
1066 |
+
t_batch = th.tensor([t] * batch_size, device=device)
|
1067 |
+
noise = th.randn_like(x_start)
|
1068 |
+
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
1069 |
+
# Calculate VLB term at the current timestep
|
1070 |
+
with th.no_grad():
|
1071 |
+
out = self._vb_terms_bpd(
|
1072 |
+
model,
|
1073 |
+
x_start=x_start,
|
1074 |
+
x_t=x_t,
|
1075 |
+
t=t_batch,
|
1076 |
+
clip_denoised=clip_denoised,
|
1077 |
+
model_kwargs=model_kwargs,
|
1078 |
+
)
|
1079 |
+
vb.append(out["output"])
|
1080 |
+
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
|
1081 |
+
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
|
1082 |
+
mse.append(mean_flat((eps - noise) ** 2))
|
1083 |
+
|
1084 |
+
vb = th.stack(vb, dim=1)
|
1085 |
+
xstart_mse = th.stack(xstart_mse, dim=1)
|
1086 |
+
mse = th.stack(mse, dim=1)
|
1087 |
+
|
1088 |
+
prior_bpd = self._prior_bpd(x_start)
|
1089 |
+
total_bpd = vb.sum(dim=1) + prior_bpd
|
1090 |
+
return {
|
1091 |
+
"total_bpd": total_bpd,
|
1092 |
+
"prior_bpd": prior_bpd,
|
1093 |
+
"vb": vb,
|
1094 |
+
"xstart_mse": xstart_mse,
|
1095 |
+
"mse": mse,
|
1096 |
+
}
|
1097 |
+
|
1098 |
+
|
1099 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
1100 |
+
"""
|
1101 |
+
Get a pre-defined beta schedule for the given name.
|
1102 |
+
|
1103 |
+
The beta schedule library consists of beta schedules which remain similar
|
1104 |
+
in the limit of num_diffusion_timesteps.
|
1105 |
+
Beta schedules may be added, but should not be removed or changed once
|
1106 |
+
they are committed to maintain backwards compatibility.
|
1107 |
+
"""
|
1108 |
+
if schedule_name == "linear":
|
1109 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
1110 |
+
# diffusion steps.
|
1111 |
+
scale = 1000 / num_diffusion_timesteps
|
1112 |
+
beta_start = scale * 0.0001
|
1113 |
+
beta_end = scale * 0.02
|
1114 |
+
return np.linspace(
|
1115 |
+
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
|
1116 |
+
)
|
1117 |
+
elif schedule_name == "cosine":
|
1118 |
+
return betas_for_alpha_bar(
|
1119 |
+
num_diffusion_timesteps,
|
1120 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
1121 |
+
)
|
1122 |
+
else:
|
1123 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
1124 |
+
|
1125 |
+
|
1126 |
+
class SpacedDiffusion(GaussianDiffusion):
|
1127 |
+
"""
|
1128 |
+
A diffusion process which can skip steps in a base diffusion process.
|
1129 |
+
|
1130 |
+
:param use_timesteps: a collection (sequence or set) of timesteps from the
|
1131 |
+
original diffusion process to retain.
|
1132 |
+
:param kwargs: the kwargs to create the base diffusion process.
|
1133 |
+
"""
|
1134 |
+
|
1135 |
+
def __init__(self, use_timesteps, **kwargs):
|
1136 |
+
self.use_timesteps = set(use_timesteps)
|
1137 |
+
self.timestep_map = []
|
1138 |
+
self.original_num_steps = len(kwargs["betas"])
|
1139 |
+
|
1140 |
+
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
|
1141 |
+
last_alpha_cumprod = 1.0
|
1142 |
+
new_betas = []
|
1143 |
+
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
|
1144 |
+
if i in self.use_timesteps:
|
1145 |
+
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
|
1146 |
+
last_alpha_cumprod = alpha_cumprod
|
1147 |
+
self.timestep_map.append(i)
|
1148 |
+
kwargs["betas"] = np.array(new_betas)
|
1149 |
+
super().__init__(**kwargs)
|
1150 |
+
|
1151 |
+
def p_mean_variance(
|
1152 |
+
self, model, *args, **kwargs
|
1153 |
+
): # pylint: disable=signature-differs
|
1154 |
+
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
|
1155 |
+
|
1156 |
+
def training_losses(
|
1157 |
+
self, model, *args, **kwargs
|
1158 |
+
): # pylint: disable=signature-differs
|
1159 |
+
return super().training_losses(self._wrap_model(model), *args, **kwargs)
|
1160 |
+
|
1161 |
+
def autoregressive_training_losses(
|
1162 |
+
self, model, *args, **kwargs
|
1163 |
+
): # pylint: disable=signature-differs
|
1164 |
+
return super().autoregressive_training_losses(self._wrap_model(model, True), *args, **kwargs)
|
1165 |
+
|
1166 |
+
def condition_mean(self, cond_fn, *args, **kwargs):
|
1167 |
+
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
|
1168 |
+
|
1169 |
+
def condition_score(self, cond_fn, *args, **kwargs):
|
1170 |
+
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
|
1171 |
+
|
1172 |
+
def _wrap_model(self, model, autoregressive=False):
|
1173 |
+
if isinstance(model, _WrappedModel) or isinstance(model, _WrappedAutoregressiveModel):
|
1174 |
+
return model
|
1175 |
+
mod = _WrappedAutoregressiveModel if autoregressive else _WrappedModel
|
1176 |
+
return mod(
|
1177 |
+
model, self.timestep_map, self.rescale_timesteps, self.original_num_steps
|
1178 |
+
)
|
1179 |
+
|
1180 |
+
def _scale_timesteps(self, t):
|
1181 |
+
# Scaling is done by the wrapped model.
|
1182 |
+
return t
|
1183 |
+
|
1184 |
+
|
1185 |
+
def space_timesteps(num_timesteps, section_counts):
|
1186 |
+
"""
|
1187 |
+
Create a list of timesteps to use from an original diffusion process,
|
1188 |
+
given the number of timesteps we want to take from equally-sized portions
|
1189 |
+
of the original process.
|
1190 |
+
|
1191 |
+
For example, if there's 300 timesteps and the section counts are [10,15,20]
|
1192 |
+
then the first 100 timesteps are strided to be 10 timesteps, the second 100
|
1193 |
+
are strided to be 15 timesteps, and the final 100 are strided to be 20.
|
1194 |
+
|
1195 |
+
If the stride is a string starting with "ddim", then the fixed striding
|
1196 |
+
from the DDIM paper is used, and only one section is allowed.
|
1197 |
+
|
1198 |
+
:param num_timesteps: the number of diffusion steps in the original
|
1199 |
+
process to divide up.
|
1200 |
+
:param section_counts: either a list of numbers, or a string containing
|
1201 |
+
comma-separated numbers, indicating the step count
|
1202 |
+
per section. As a special case, use "ddimN" where N
|
1203 |
+
is a number of steps to use the striding from the
|
1204 |
+
DDIM paper.
|
1205 |
+
:return: a set of diffusion steps from the original process to use.
|
1206 |
+
"""
|
1207 |
+
if isinstance(section_counts, str):
|
1208 |
+
if section_counts.startswith("ddim"):
|
1209 |
+
desired_count = int(section_counts[len("ddim") :])
|
1210 |
+
for i in range(1, num_timesteps):
|
1211 |
+
if len(range(0, num_timesteps, i)) == desired_count:
|
1212 |
+
return set(range(0, num_timesteps, i))
|
1213 |
+
raise ValueError(
|
1214 |
+
f"cannot create exactly {num_timesteps} steps with an integer stride"
|
1215 |
+
)
|
1216 |
+
section_counts = [int(x) for x in section_counts.split(",")]
|
1217 |
+
size_per = num_timesteps // len(section_counts)
|
1218 |
+
extra = num_timesteps % len(section_counts)
|
1219 |
+
start_idx = 0
|
1220 |
+
all_steps = []
|
1221 |
+
for i, section_count in enumerate(section_counts):
|
1222 |
+
size = size_per + (1 if i < extra else 0)
|
1223 |
+
if size < section_count:
|
1224 |
+
raise ValueError(
|
1225 |
+
f"cannot divide section of {size} steps into {section_count}"
|
1226 |
+
)
|
1227 |
+
if section_count <= 1:
|
1228 |
+
frac_stride = 1
|
1229 |
+
else:
|
1230 |
+
frac_stride = (size - 1) / (section_count - 1)
|
1231 |
+
cur_idx = 0.0
|
1232 |
+
taken_steps = []
|
1233 |
+
for _ in range(section_count):
|
1234 |
+
taken_steps.append(start_idx + round(cur_idx))
|
1235 |
+
cur_idx += frac_stride
|
1236 |
+
all_steps += taken_steps
|
1237 |
+
start_idx += size
|
1238 |
+
return set(all_steps)
|
1239 |
+
|
1240 |
+
|
1241 |
+
class _WrappedModel:
|
1242 |
+
def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps):
|
1243 |
+
self.model = model
|
1244 |
+
self.timestep_map = timestep_map
|
1245 |
+
self.rescale_timesteps = rescale_timesteps
|
1246 |
+
self.original_num_steps = original_num_steps
|
1247 |
+
|
1248 |
+
def __call__(self, x, ts, **kwargs):
|
1249 |
+
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
|
1250 |
+
new_ts = map_tensor[ts]
|
1251 |
+
if self.rescale_timesteps:
|
1252 |
+
new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
|
1253 |
+
return self.model(x, new_ts, **kwargs)
|
1254 |
+
|
1255 |
+
|
1256 |
+
class _WrappedAutoregressiveModel:
|
1257 |
+
def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps):
|
1258 |
+
self.model = model
|
1259 |
+
self.timestep_map = timestep_map
|
1260 |
+
self.rescale_timesteps = rescale_timesteps
|
1261 |
+
self.original_num_steps = original_num_steps
|
1262 |
+
|
1263 |
+
def __call__(self, x, x0, ts, **kwargs):
|
1264 |
+
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
|
1265 |
+
new_ts = map_tensor[ts]
|
1266 |
+
if self.rescale_timesteps:
|
1267 |
+
new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
|
1268 |
+
return self.model(x, x0, new_ts, **kwargs)
|
1269 |
+
|
1270 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
1271 |
+
"""
|
1272 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
1273 |
+
|
1274 |
+
:param arr: the 1-D numpy array.
|
1275 |
+
:param timesteps: a tensor of indices into the array to extract.
|
1276 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
1277 |
+
dimension equal to the length of timesteps.
|
1278 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
1279 |
+
"""
|
1280 |
+
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
1281 |
+
while len(res.shape) < len(broadcast_shape):
|
1282 |
+
res = res[..., None]
|
1283 |
+
return res.expand(broadcast_shape)
|
maha_tts/utils/stft.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
from scipy.signal import get_window
|
6 |
+
from librosa.util import pad_center, tiny
|
7 |
+
from maha_tts.utils.audio import window_sumsquare
|
8 |
+
|
9 |
+
|
10 |
+
class STFT(torch.nn.Module):
|
11 |
+
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
|
12 |
+
def __init__(self, filter_length=800, hop_length=200, win_length=800,
|
13 |
+
window='hann'):
|
14 |
+
super(STFT, self).__init__()
|
15 |
+
self.filter_length = filter_length
|
16 |
+
self.hop_length = hop_length
|
17 |
+
self.win_length = win_length
|
18 |
+
self.window = window
|
19 |
+
self.forward_transform = None
|
20 |
+
scale = self.filter_length / self.hop_length
|
21 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
22 |
+
|
23 |
+
cutoff = int((self.filter_length / 2 + 1))
|
24 |
+
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
|
25 |
+
np.imag(fourier_basis[:cutoff, :])])
|
26 |
+
|
27 |
+
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
28 |
+
inverse_basis = torch.FloatTensor(
|
29 |
+
np.linalg.pinv(scale * fourier_basis).T[:, None, :])
|
30 |
+
|
31 |
+
if window is not None:
|
32 |
+
assert(filter_length >= win_length)
|
33 |
+
# get window and zero center pad it to filter_length
|
34 |
+
fft_window = get_window(window, win_length, fftbins=True)
|
35 |
+
fft_window = pad_center(fft_window, size = filter_length)
|
36 |
+
fft_window = torch.from_numpy(fft_window).float()
|
37 |
+
|
38 |
+
# window the bases
|
39 |
+
forward_basis *= fft_window
|
40 |
+
inverse_basis *= fft_window
|
41 |
+
|
42 |
+
self.register_buffer('forward_basis', forward_basis.float())
|
43 |
+
self.register_buffer('inverse_basis', inverse_basis.float())
|
44 |
+
|
45 |
+
def transform(self, input_data):
|
46 |
+
num_batches = input_data.size(0)
|
47 |
+
num_samples = input_data.size(1)
|
48 |
+
|
49 |
+
self.num_samples = num_samples
|
50 |
+
|
51 |
+
# similar to librosa, reflect-pad the input
|
52 |
+
input_data = input_data.view(num_batches, 1, num_samples)
|
53 |
+
input_data = F.pad(
|
54 |
+
input_data.unsqueeze(1),
|
55 |
+
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
|
56 |
+
mode='reflect')
|
57 |
+
input_data = input_data.squeeze(1)
|
58 |
+
|
59 |
+
forward_transform = F.conv1d(
|
60 |
+
input_data,
|
61 |
+
Variable(self.forward_basis, requires_grad=False),
|
62 |
+
stride=self.hop_length,
|
63 |
+
padding=0)
|
64 |
+
|
65 |
+
cutoff = int((self.filter_length / 2) + 1)
|
66 |
+
real_part = forward_transform[:, :cutoff, :]
|
67 |
+
imag_part = forward_transform[:, cutoff:, :]
|
68 |
+
|
69 |
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
70 |
+
phase = torch.autograd.Variable(
|
71 |
+
torch.atan2(imag_part.data, real_part.data))
|
72 |
+
|
73 |
+
return magnitude, phase
|
74 |
+
|
75 |
+
def inverse(self, magnitude, phase):
|
76 |
+
recombine_magnitude_phase = torch.cat(
|
77 |
+
[magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
|
78 |
+
|
79 |
+
inverse_transform = F.conv_transpose1d(
|
80 |
+
recombine_magnitude_phase,
|
81 |
+
Variable(self.inverse_basis, requires_grad=False),
|
82 |
+
stride=self.hop_length,
|
83 |
+
padding=0)
|
84 |
+
|
85 |
+
if self.window is not None:
|
86 |
+
window_sum = window_sumsquare(
|
87 |
+
self.window, magnitude.size(-1), hop_length=self.hop_length,
|
88 |
+
win_length=self.win_length, n_fft=self.filter_length,
|
89 |
+
dtype=np.float32)
|
90 |
+
# remove modulation effects
|
91 |
+
approx_nonzero_indices = torch.from_numpy(
|
92 |
+
np.where(window_sum > tiny(window_sum))[0])
|
93 |
+
window_sum = torch.autograd.Variable(
|
94 |
+
torch.from_numpy(window_sum), requires_grad=False)
|
95 |
+
window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
|
96 |
+
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
|
97 |
+
|
98 |
+
# scale by hop ratio
|
99 |
+
inverse_transform *= float(self.filter_length) / self.hop_length
|
100 |
+
|
101 |
+
inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
|
102 |
+
inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
|
103 |
+
|
104 |
+
return inverse_transform
|
105 |
+
|
106 |
+
def forward(self, input_data):
|
107 |
+
self.magnitude, self.phase = self.transform(input_data)
|
108 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
109 |
+
return reconstruction
|
ref_clips/2971_4275_000003_000007.wav
ADDED
Binary file (392 kB). View file
|
|
ref_clips/2971_4275_000020_000001.wav
ADDED
Binary file (386 kB). View file
|
|
ref_clips/2971_4275_000023_000010.wav
ADDED
Binary file (435 kB). View file
|
|
ref_clips/2971_4275_000049_000000.wav
ADDED
Binary file (366 kB). View file
|
|
ref_clips/2971_4275_000049_000004.wav
ADDED
Binary file (321 kB). View file
|
|
ref_clips/2971_4275_000050_000000.wav
ADDED
Binary file (385 kB). View file
|
|
tts.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch,glob
|
2 |
+
from maha_tts import load_diffuser,load_models,infer_tts
|
3 |
+
from scipy.io.wavfile import write
|
4 |
+
|
5 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
6 |
+
print('Using:',device)
|
7 |
+
text = 'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition.'
|
8 |
+
ref_clips = glob.glob('/Users/jaskaransingh/Desktop/NeuralSpeak/ref_clips/*.wav')
|
9 |
+
# print(len(ref_clips))
|
10 |
+
|
11 |
+
# diffuser = load_diffuser()
|
12 |
+
diff_model,ts_model,vocoder,diffuser = load_models('Smolie',device)
|
13 |
+
audio,sr = infer_tts(text,ref_clips,diffuser,diff_model,ts_model,vocoder)
|
14 |
+
write('test.wav',sr,audio)
|