Commit
·
0cc372e
1
Parent(s):
a5ccbdf
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xls-r-300m-or-d5
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xls-r-300m-or-d5
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.9571
|
20 |
+
- Wer: 0.5450
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.000111
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 800
|
48 |
+
- num_epochs: 200
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 9.2958 | 12.5 | 300 | 4.9014 | 1.0 |
|
56 |
+
| 3.4065 | 25.0 | 600 | 3.5150 | 1.0 |
|
57 |
+
| 1.5402 | 37.5 | 900 | 0.8356 | 0.7249 |
|
58 |
+
| 0.6049 | 50.0 | 1200 | 0.7754 | 0.6349 |
|
59 |
+
| 0.4074 | 62.5 | 1500 | 0.7994 | 0.6217 |
|
60 |
+
| 0.3097 | 75.0 | 1800 | 0.8815 | 0.5985 |
|
61 |
+
| 0.2593 | 87.5 | 2100 | 0.8532 | 0.5754 |
|
62 |
+
| 0.2097 | 100.0 | 2400 | 0.9077 | 0.5648 |
|
63 |
+
| 0.1784 | 112.5 | 2700 | 0.9047 | 0.5668 |
|
64 |
+
| 0.1567 | 125.0 | 3000 | 0.9019 | 0.5728 |
|
65 |
+
| 0.1315 | 137.5 | 3300 | 0.9295 | 0.5827 |
|
66 |
+
| 0.1125 | 150.0 | 3600 | 0.9256 | 0.5681 |
|
67 |
+
| 0.1035 | 162.5 | 3900 | 0.9148 | 0.5496 |
|
68 |
+
| 0.0901 | 175.0 | 4200 | 0.9480 | 0.5483 |
|
69 |
+
| 0.0817 | 187.5 | 4500 | 0.9799 | 0.5516 |
|
70 |
+
| 0.079 | 200.0 | 4800 | 0.9571 | 0.5450 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.16.2
|
76 |
+
- Pytorch 1.10.0+cu111
|
77 |
+
- Datasets 1.18.3
|
78 |
+
- Tokenizers 0.11.0
|