DrishtiSharma commited on
Commit
0cc372e
·
1 Parent(s): a5ccbdf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-or-d5
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-or-d5
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.9571
20
+ - Wer: 0.5450
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.000111
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 800
48
+ - num_epochs: 200
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | 9.2958 | 12.5 | 300 | 4.9014 | 1.0 |
56
+ | 3.4065 | 25.0 | 600 | 3.5150 | 1.0 |
57
+ | 1.5402 | 37.5 | 900 | 0.8356 | 0.7249 |
58
+ | 0.6049 | 50.0 | 1200 | 0.7754 | 0.6349 |
59
+ | 0.4074 | 62.5 | 1500 | 0.7994 | 0.6217 |
60
+ | 0.3097 | 75.0 | 1800 | 0.8815 | 0.5985 |
61
+ | 0.2593 | 87.5 | 2100 | 0.8532 | 0.5754 |
62
+ | 0.2097 | 100.0 | 2400 | 0.9077 | 0.5648 |
63
+ | 0.1784 | 112.5 | 2700 | 0.9047 | 0.5668 |
64
+ | 0.1567 | 125.0 | 3000 | 0.9019 | 0.5728 |
65
+ | 0.1315 | 137.5 | 3300 | 0.9295 | 0.5827 |
66
+ | 0.1125 | 150.0 | 3600 | 0.9256 | 0.5681 |
67
+ | 0.1035 | 162.5 | 3900 | 0.9148 | 0.5496 |
68
+ | 0.0901 | 175.0 | 4200 | 0.9480 | 0.5483 |
69
+ | 0.0817 | 187.5 | 4500 | 0.9799 | 0.5516 |
70
+ | 0.079 | 200.0 | 4800 | 0.9571 | 0.5450 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.16.2
76
+ - Pytorch 1.10.0+cu111
77
+ - Datasets 1.18.3
78
+ - Tokenizers 0.11.0