DrishtiSharma
commited on
Commit
•
a742827
1
Parent(s):
26465e2
update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Wer: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -44,7 +44,7 @@ The following hyperparameters were used during training:
|
|
44 |
- total_train_batch_size: 32
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- lr_scheduler_warmup_steps:
|
48 |
- num_epochs: 50
|
49 |
- mixed_precision_training: Native AMP
|
50 |
|
@@ -52,42 +52,42 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
| 3.
|
58 |
-
| 1.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6552
|
20 |
+
- Wer: 0.3200
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
44 |
- total_train_batch_size: 32
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 1800
|
48 |
- num_epochs: 50
|
49 |
- mixed_precision_training: Native AMP
|
50 |
|
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 12.2663 | 1.36 | 200 | 5.9245 | 1.0 |
|
56 |
+
| 4.1856 | 2.72 | 400 | 3.4968 | 1.0 |
|
57 |
+
| 3.3908 | 4.08 | 600 | 2.9970 | 1.0 |
|
58 |
+
| 1.5444 | 5.44 | 800 | 0.9071 | 0.6139 |
|
59 |
+
| 0.7237 | 6.8 | 1000 | 0.6508 | 0.4862 |
|
60 |
+
| 0.5323 | 8.16 | 1200 | 0.6217 | 0.4647 |
|
61 |
+
| 0.4426 | 9.52 | 1400 | 0.5785 | 0.4288 |
|
62 |
+
| 0.3933 | 10.88 | 1600 | 0.5935 | 0.4217 |
|
63 |
+
| 0.3532 | 12.24 | 1800 | 0.6358 | 0.4465 |
|
64 |
+
| 0.3319 | 13.6 | 2000 | 0.5789 | 0.4118 |
|
65 |
+
| 0.2877 | 14.96 | 2200 | 0.6163 | 0.4056 |
|
66 |
+
| 0.2663 | 16.33 | 2400 | 0.6176 | 0.3893 |
|
67 |
+
| 0.2511 | 17.68 | 2600 | 0.6065 | 0.3999 |
|
68 |
+
| 0.2275 | 19.05 | 2800 | 0.6183 | 0.3842 |
|
69 |
+
| 0.2098 | 20.41 | 3000 | 0.6486 | 0.3864 |
|
70 |
+
| 0.1943 | 21.77 | 3200 | 0.6365 | 0.3885 |
|
71 |
+
| 0.1877 | 23.13 | 3400 | 0.6013 | 0.3677 |
|
72 |
+
| 0.1679 | 24.49 | 3600 | 0.6451 | 0.3795 |
|
73 |
+
| 0.1667 | 25.85 | 3800 | 0.6410 | 0.3635 |
|
74 |
+
| 0.1514 | 27.21 | 4000 | 0.6000 | 0.3577 |
|
75 |
+
| 0.1453 | 28.57 | 4200 | 0.6020 | 0.3518 |
|
76 |
+
| 0.134 | 29.93 | 4400 | 0.6531 | 0.3517 |
|
77 |
+
| 0.1354 | 31.29 | 4600 | 0.6874 | 0.3578 |
|
78 |
+
| 0.1224 | 32.65 | 4800 | 0.6519 | 0.3492 |
|
79 |
+
| 0.1199 | 34.01 | 5000 | 0.6553 | 0.3490 |
|
80 |
+
| 0.1077 | 35.37 | 5200 | 0.6621 | 0.3429 |
|
81 |
+
| 0.0997 | 36.73 | 5400 | 0.6641 | 0.3413 |
|
82 |
+
| 0.0964 | 38.09 | 5600 | 0.6722 | 0.3385 |
|
83 |
+
| 0.0931 | 39.45 | 5800 | 0.6365 | 0.3363 |
|
84 |
+
| 0.0944 | 40.81 | 6000 | 0.6454 | 0.3326 |
|
85 |
+
| 0.0862 | 42.18 | 6200 | 0.6497 | 0.3256 |
|
86 |
+
| 0.0848 | 43.54 | 6400 | 0.6599 | 0.3226 |
|
87 |
+
| 0.0793 | 44.89 | 6600 | 0.6625 | 0.3232 |
|
88 |
+
| 0.076 | 46.26 | 6800 | 0.6463 | 0.3186 |
|
89 |
+
| 0.0749 | 47.62 | 7000 | 0.6559 | 0.3225 |
|
90 |
+
| 0.0663 | 48.98 | 7200 | 0.6552 | 0.3200 |
|
91 |
|
92 |
|
93 |
### Framework versions
|