DrishtiSharma commited on
Commit
4efef42
·
1 Parent(s): 3e79ed7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-as-g1
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-as-g1
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.3327
20
+ - Wer: 0.5744
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 1000
48
+ - num_epochs: 200
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:------:|:----:|:---------------:|:------:|
55
+ | 14.1958 | 5.26 | 100 | 7.1919 | 1.0 |
56
+ | 5.0035 | 10.51 | 200 | 3.9362 | 1.0 |
57
+ | 3.6193 | 15.77 | 300 | 3.4451 | 1.0 |
58
+ | 3.4852 | 21.05 | 400 | 3.3536 | 1.0 |
59
+ | 2.8489 | 26.31 | 500 | 1.6451 | 0.9100 |
60
+ | 0.9568 | 31.56 | 600 | 1.0514 | 0.7561 |
61
+ | 0.4865 | 36.82 | 700 | 1.0434 | 0.7184 |
62
+ | 0.322 | 42.1 | 800 | 1.0825 | 0.7210 |
63
+ | 0.2383 | 47.36 | 900 | 1.1304 | 0.6897 |
64
+ | 0.2136 | 52.62 | 1000 | 1.1150 | 0.6854 |
65
+ | 0.179 | 57.87 | 1100 | 1.2453 | 0.6875 |
66
+ | 0.1539 | 63.15 | 1200 | 1.2211 | 0.6704 |
67
+ | 0.1303 | 68.41 | 1300 | 1.2859 | 0.6747 |
68
+ | 0.1183 | 73.67 | 1400 | 1.2775 | 0.6721 |
69
+ | 0.0994 | 78.92 | 1500 | 1.2321 | 0.6404 |
70
+ | 0.0991 | 84.21 | 1600 | 1.2766 | 0.6524 |
71
+ | 0.0887 | 89.46 | 1700 | 1.3026 | 0.6344 |
72
+ | 0.0754 | 94.72 | 1800 | 1.3199 | 0.6704 |
73
+ | 0.0693 | 99.97 | 1900 | 1.3044 | 0.6361 |
74
+ | 0.0568 | 105.26 | 2000 | 1.3541 | 0.6254 |
75
+ | 0.0536 | 110.51 | 2100 | 1.3320 | 0.6249 |
76
+ | 0.0529 | 115.77 | 2200 | 1.3370 | 0.6271 |
77
+ | 0.048 | 121.05 | 2300 | 1.2757 | 0.6031 |
78
+ | 0.0419 | 126.31 | 2400 | 1.2661 | 0.6172 |
79
+ | 0.0349 | 131.56 | 2500 | 1.2897 | 0.6048 |
80
+ | 0.0309 | 136.82 | 2600 | 1.2688 | 0.5962 |
81
+ | 0.0278 | 142.1 | 2700 | 1.2885 | 0.5954 |
82
+ | 0.0254 | 147.36 | 2800 | 1.2988 | 0.5915 |
83
+ | 0.0223 | 152.62 | 2900 | 1.3153 | 0.5941 |
84
+ | 0.0216 | 157.87 | 3000 | 1.2936 | 0.5937 |
85
+ | 0.0186 | 163.15 | 3100 | 1.2906 | 0.5877 |
86
+ | 0.0156 | 168.41 | 3200 | 1.3476 | 0.5962 |
87
+ | 0.0158 | 173.67 | 3300 | 1.3363 | 0.5847 |
88
+ | 0.0142 | 178.92 | 3400 | 1.3367 | 0.5847 |
89
+ | 0.0153 | 184.21 | 3500 | 1.3105 | 0.5757 |
90
+ | 0.0119 | 189.46 | 3600 | 1.3255 | 0.5705 |
91
+ | 0.0115 | 194.72 | 3700 | 1.3340 | 0.5787 |
92
+ | 0.0103 | 199.97 | 3800 | 1.3327 | 0.5744 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.16.2
98
+ - Pytorch 1.10.0+cu111
99
+ - Datasets 1.18.3
100
+ - Tokenizers 0.11.0