DrishtiSharma commited on
Commit
c82c0ef
1 Parent(s): b42a471

Model save

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/codebert-base
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: codebert-base-password-strength-classifier-normal-weight-balancing
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # codebert-base-password-strength-classifier-normal-weight-balancing
16
+
17
+ This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0083
20
+ - Accuracy: 0.9977
21
+ - Weighted f1: 0.9977
22
+ - Micro f1: 0.9977
23
+ - Macro f1: 0.9966
24
+ - Weighted recall: 0.9977
25
+ - Micro recall: 0.9977
26
+ - Macro recall: 0.9979
27
+ - Weighted precision: 0.9977
28
+ - Micro precision: 0.9977
29
+ - Macro precision: 0.9953
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2e-05
49
+ - train_batch_size: 16
50
+ - eval_batch_size: 16
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 2
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
59
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
60
+ | 0.0345 | 1.0 | 37667 | 0.0522 | 0.9825 | 0.9829 | 0.9825 | 0.9755 | 0.9825 | 0.9825 | 0.9915 | 0.9844 | 0.9825 | 0.9619 |
61
+ | 0.0099 | 2.0 | 75334 | 0.0083 | 0.9977 | 0.9977 | 0.9977 | 0.9966 | 0.9977 | 0.9977 | 0.9979 | 0.9977 | 0.9977 | 0.9953 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.34.0.dev0
67
+ - Pytorch 2.0.1+cu118
68
+ - Datasets 2.14.6.dev0
69
+ - Tokenizers 0.13.3