nectar / handler.py
Drazcat-AI's picture
Create handler.py
cf71c98
from huggingface_hub import hf_hub_download
from typing import Dict, List, Any
from ultralytics import YOLO
import json
class EndpointHandler():
def __init__(self, path=""):
hf_hub_download(repo_id="Drazcat-AI/nectar", filename="yolov8_nectar/runs/detect/train/weights/best.pt")
self.model = YOLO(hf_hub_download(repo_id="Drazcat-AI/nectar", filename="yolov8_nectar/runs/detect/train/weights/best.pt", local_files_only=True))
def predict_objects(self, image_path):
results = self.model(image_path, imgsz=800)
predictions = []
for box in results[0].boxes:
class_id = results[0].names[box.cls[0].item()]
cords = box.xywh[0].tolist()
cords = [round(x) for x in cords]
conf = round(box.conf[0].item(), 2)
prediction = {
"label": class_id,
"score": conf,
"box":{
"x": cords[0],
"y": cords[1],
"width": cords[2],
"height": cords[3]}
}
predictions.append(prediction)
predictions_array = {"predictions": predictions}
return predictions_array
def __call__(self, event):
if "inputs" not in event:
return {
"statusCode": 400,
"body": json.dumps("Error: Please provide an 'inputs' parameter."),
}
image_path = event["inputs"]
try:
predictions = self.predict_objects(image_path)
return {
"statusCode": 200,
"body": json.dumps(predictions),
}
except Exception as e:
return {
"statusCode": 500,
"body": json.dumps(f"Error: {str(e)}"),
}