feat: push LunarLander model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 226.80 +/- 19.21
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x780d9c94dcf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x780d9c94dd80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780d9c94de10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780d9c94dea0>", "_build": "<function ActorCriticPolicy._build at 0x780d9c94df30>", "forward": "<function ActorCriticPolicy.forward at 0x780d9c94dfc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x780d9c94e050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780d9c94e0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x780d9c94e170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780d9c94e200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780d9c94e290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x780d9c94e320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x780d9c9582c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702069742513429797, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABc2r17boC6Fuy+uqZvi7Xu2906GhjeOQAAgD8AAIA/gKFfvaSgSbk7asm0icbwrpSLjTuz2M8zAACAPwAAgD/GgTQ+BbnxPpStqrxHqVS+CMRFPNayUbwAAAAAAAAAADOBdz2Pnne6OWNCOy++ZjaCtsQ4PbxfugAAgD8AAIA/5hw4vW/MGz9+gwg+I9JZvi3eHD2ihps9AAAAAAAAAADAk4Y+teSOP8ehEj8taaW+eO6lPgrGPT4AAAAAAAAAAA3+ND49vkY8u67yuhEvDrnv4N09FBwYOgAAgD8AAIA/QPesvbgIgLvDnRk+CXjtvcssKbwrhIq+AACAPwAAgD92IMU+eKy7vaNPiTtsH066wO+dvgbVYzoAAIA/AACAP/MCMr48toc+ImlFPe3nRL5xwYu8OEkVvQAAAAAAAAAABp9UvjiY3LtjmpQ7lBUTOR1sMz0Yv6+6AACAPwAAgD+NcY8+9pw5vMHvKrtFygw5JWOnvRgMSzoAAIA/AACAP4B5mD1SAOa5T56XuvuThTYbx2E6q0+zOQAAgD8AAIA/kC2wPod4s72iJPS8xM0tu7EG0r60zxu9AACAPwAAgD9ma7q9w6lMumHjRrqV8pC0TpeMu/u/aDkAAIA/AACAP00XiT60U4+8xpdWPI2wK7pfYAC+NSsJuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFgZhrWRRuWMAWyUTegDjAF0lEdAjwPiNS619nV9lChoBkdAWa+SwGGEf2gHTegDaAhHQI8G0gntv4x1fZQoaAZHQGN/HdGiHqNoB03oA2gIR0CPFNsUqQRxdX2UKGgGR0BimYR9PUKBaAdN6ANoCEdAjxwvJ7sv7HV9lChoBkdAXUTy08eS0WgHTegDaAhHQI8rNNN8E3d1fZQoaAZHQFmJrOZ9d/toB03oA2gIR0CPLAKIBRyfdX2UKGgGR0BgJcT101ZUaAdN6ANoCEdAjzlrSuyNXHV9lChoBkdAMC3IIWxhUmgHTTIBaAhHQI9B1DBuXNV1fZQoaAZHQGAbvva11GNoB03oA2gIR0CPTBbFjurqdX2UKGgGR0BdP9zCDVYqaAdN6ANoCEdAj0y2912aD3V9lChoBkdAZdGImgJ1JWgHTegDaAhHQI9OTR+jM3Z1fZQoaAZHQGTeAHVwxWVoB03oA2gIR0CPXXKq4pc5dX2UKGgGR0BJvKiGnGbTaAdN6ANoCEdAj2cH5aePJnV9lChoBkdAX7BWCEpRXWgHTegDaAhHQI97aVnmJWN1fZQoaAZHQFiP66J66atoB03oA2gIR0CPhYsH0K7adX2UKGgGR0BHGh4dIXj3aAdN6ANoCEdAj4XzPBzmwXV9lChoBkdAakUHxBmf5GgHTagBaAhHQI+osunMt9R1fZQoaAZHQFhMXO4XoDBoB03oA2gIR0CPs57F85S4dX2UKGgGR0Bgiz8WKuSwaAdN6ANoCEdAj7rNTcZccHV9lChoBkdAYSCrrgOz6mgHTegDaAhHQI/EBG8VYZF1fZQoaAZHQFm9BH09QoFoB03oA2gIR0CPyDkd3jdYdX2UKGgGR0Bbrx4IKMNuaAdN6ANoCEdAj9FYVh1DB3V9lChoBkdAW/9DzAeq72gHTegDaAhHQI/R3jp9qlB1fZQoaAZHQF9SrKNhmXhoB03oA2gIR0CP3RImw7kodX2UKGgGR0Bd/cOskpqiaAdN6ANoCEdAj+RPoNd7fHV9lChoBkdAZNDhcZ9/jWgHTegDaAhHQI/tP5BTn7p1fZQoaAZHQF2NTM7lq8FoB03oA2gIR0CP7gwFC9h7dX2UKGgGR0BZsglruYx+aAdN6ANoCEdAj/AG+9Jz1nV9lChoBkdAWdsNWluWKWgHTegDaAhHQJBdVPFefI11fZQoaAZHQFpo9US7GvRoB03oA2gIR0CQakWEK3NLdX2UKGgGR0Bb2rDQ7cO9aAdN6ANoCEdAkG/mITGo73V9lChoBkdAYZ4OGTLW7WgHTegDaAhHQJBwGx+rlvJ1fZQoaAZHQF3EyFfzBhxoB03oA2gIR0CQgRBomG/OdX2UKGgGR0BY7jMeOn2qaAdN6ANoCEdAkIa7RF7UonV9lChoBkdAQUIbKifxt2gHS/5oCEdAkIcrlNlAeXV9lChoBkdAW6EuTRplBmgHTegDaAhHQJCKbUiILw51fZQoaAZHQGkSldTo+wFoB03JAmgIR0CQirtlqagFdX2UKGgGR0BarKu0TlDGaAdN6ANoCEdAkI69QCSzPnV9lChoBkdAYxqHyEtdzGgHTegDaAhHQJCQpYNiH7B1fZQoaAZHQFo1S1mapgloB03oA2gIR0CQlKy/KyOadX2UKGgGR0BgnUzoEB8yaAdN6ANoCEdAkJToVIqb0HV9lChoBkdAGymXPZ7HAGgHTR0BaAhHQJCWJubZvk11fZQoaAZHQF3TkUKzAvdoB03oA2gIR0CQmXm/336AdX2UKGgGR0AaPjNpudf+aAdNFQFoCEdAkJvCgCfYjHV9lChoBkdAYNSArhBJI2gHTegDaAhHQJChVvAGjbl1fZQoaAZHQGHT3vH93r5oB03oA2gIR0CQoaYVZcLSdX2UKGgGR0Bi7Qt4A0bcaAdN6ANoCEdAkKJ8gQpWm3V9lChoBkdAaiMgi/wiJWgHTVcBaAhHQJClMIUrTYx1fZQoaAZHQFWnuMdcSoRoB03oA2gIR0CQroZAY51edX2UKGgGR0BCwqxC6YmcaAdNBgFoCEdAkLQ0JKJ2uHV9lChoBkdAYNwl0HQhOmgHTegDaAhHQJC22cI7eVN1fZQoaAZHQGMpjgqEvkBoB03oA2gIR0CQufF1B+nZdX2UKGgGR0AXifwqiGnGaAdNHwFoCEdAkMg5WV/tpnV9lChoBkdAX2uvpyIYWWgHTegDaAhHQJDMCFUQ0411fZQoaAZHQGPuhl18stloB03oA2gIR0CQzGg5BC2MdX2UKGgGR0BTxk0elsP8aAdN6ANoCEdAkM9NHH3lCHV9lChoBkdAX0phZyMkyGgHTegDaAhHQJDVPJlrdnF1fZQoaAZHQGFlHvc8DCBoB03oA2gIR0CQ2vuTRplCdX2UKGgGR0BelyhJyyUtaAdN6ANoCEdAkNtU9t/FznV9lChoBkdAYn94Z/CqImgHTegDaAhHQJDdF1oxpL51fZQoaAZHQGEZdIPK+ztoB03oA2gIR0CQ4d6oVEeAdX2UKGgGR0Bl2zr3TNMXaAdN6ANoCEdAkORZ5Rjz7XV9lChoBkdAV/2z7di2D2gHTegDaAhHQJDoyrT6SDB1fZQoaAZHQGSBFhXr+o9oB03oA2gIR0CQ6apeeFtbdX2UKGgGR0BiDXVoYekpaAdN6ANoCEdAkOuu76Hj63V9lChoBkdAX32yIHkcTGgHTegDaAhHQJFNhf/m1Y11fZQoaAZHQF+4kgOjIq9oB03oA2gIR0CRVyku6ErYdX2UKGgGR0BhTbXWe6I4aAdN6ANoCEdAkVq8ujASF3V9lChoBkdAbBXFkxyn1mgHTZ4BaAhHQJFfMA1ejVR1fZQoaAZHQFltKqGUOd5oB03oA2gIR0CRaVcL0BfbdX2UKGgGR0BkuZguyu6maAdN6ANoCEdAkW1Vk6Lfk3V9lChoBkdAZWwPT5O8CmgHTegDaAhHQJFttDKHO8l1fZQoaAZHQGIrs/Y8Md9oB03oA2gIR0CRcNEXLvCudX2UKGgGR0BjINGG21D0aAdN6ANoCEdAkXdSD7Ikq3V9lChoBkdAY9eARTS9d2gHTegDaAhHQJF9wKKHfuV1fZQoaAZHQGD+IYvWYnhoB03oA2gIR0CRfiZZSvTxdX2UKGgGR0BePzjBEa2naAdN6ANoCEdAkYAEGNaQm3V9lChoBkdAXclbkfcN6WgHTegDaAhHQJGFCzyBkI51fZQoaAZHQE1n++dsi0RoB03oA2gIR0CRh6ztCzC2dX2UKGgGR0BkFSC6H0sfaAdN6ANoCEdAkY1y9EkSmXV9lChoBkdAW3GbBoEjgWgHTegDaAhHQJGPzvd/J/51fZQoaAZHQEI5rIo3JgdoB0vxaAhHQJGQ+XLNfPZ1fZQoaAZHQDS0Oy3Td+JoB00dAWgIR0CRmAiZv1lHdX2UKGgGR0Bgdc/yGzrvaAdN6ANoCEdAkZiUBOpKjHV9lChoBkdAYqNPva11GWgHTegDaAhHQJGh1ODaoMt1fZQoaAZHQGGo1WjoIOZoB03oA2gIR0CRpT++/QBxdX2UKGgGR0BicvY6GQCCaAdN6ANoCEdAkamXWjGkvnV9lChoBkdAEYyE+PikwmgHS/hoCEdAkapx0dRzinV9lChoBkdAQc7X18LKFWgHTegDaAhHQJG0yVUuL751fZQoaAZHQGB4h7E5yU9oB03oA2gIR0CRuajz7MxHdX2UKGgGR0BfgyO3lS0jaAdN6ANoCEdAkboVwT/Q0HV9lChoBkdAXHH/ZM+NcWgHTegDaAhHQJG9rai9Iwx1fZQoaAZHQGAjyUkfLcNoB03oA2gIR0CRws+u/1xsdX2UKGgGR0BesxmkFfReaAdN6ANoCEdAkcco2sJY1nV9lChoBkdAYGul+mWMTGgHTegDaAhHQJHHanpB5X51fZQoaAZHQFujUmD15B1oB03oA2gIR0CRzphWYF7ldX2UKGgGR0BcvBWHUMG5aAdN6ANoCEdAkdQHIlt0m3V9lChoBkdAXZ7rZ8KG+WgHTegDaAhHQJHWCn0kGA11fZQoaAZHQF/Qc0cfeUJoB03oA2gIR0CR1wpG4I8hdX2UKGgGR0BguQzrNW2gaAdN6ANoCEdAkdzsWfseGXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf30ebe4a057ac8b28707afb1e30fe388c78ec422d72a438e4cf6717a540b60c
|
3 |
+
size 148050
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x780d9c94dcf0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x780d9c94dd80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780d9c94de10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780d9c94dea0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x780d9c94df30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x780d9c94dfc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x780d9c94e050>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780d9c94e0e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x780d9c94e170>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780d9c94e200>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780d9c94e290>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x780d9c94e320>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x780d9c9582c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 524288,
|
25 |
+
"_total_timesteps": 500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1702069742513429797,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABc2r17boC6Fuy+uqZvi7Xu2906GhjeOQAAgD8AAIA/gKFfvaSgSbk7asm0icbwrpSLjTuz2M8zAACAPwAAgD/GgTQ+BbnxPpStqrxHqVS+CMRFPNayUbwAAAAAAAAAADOBdz2Pnne6OWNCOy++ZjaCtsQ4PbxfugAAgD8AAIA/5hw4vW/MGz9+gwg+I9JZvi3eHD2ihps9AAAAAAAAAADAk4Y+teSOP8ehEj8taaW+eO6lPgrGPT4AAAAAAAAAAA3+ND49vkY8u67yuhEvDrnv4N09FBwYOgAAgD8AAIA/QPesvbgIgLvDnRk+CXjtvcssKbwrhIq+AACAPwAAgD92IMU+eKy7vaNPiTtsH066wO+dvgbVYzoAAIA/AACAP/MCMr48toc+ImlFPe3nRL5xwYu8OEkVvQAAAAAAAAAABp9UvjiY3LtjmpQ7lBUTOR1sMz0Yv6+6AACAPwAAgD+NcY8+9pw5vMHvKrtFygw5JWOnvRgMSzoAAIA/AACAP4B5mD1SAOa5T56XuvuThTYbx2E6q0+zOQAAgD8AAIA/kC2wPod4s72iJPS8xM0tu7EG0r60zxu9AACAPwAAgD9ma7q9w6lMumHjRrqV8pC0TpeMu/u/aDkAAIA/AACAP00XiT60U4+8xpdWPI2wK7pfYAC+NSsJuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.04857599999999995,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFgZhrWRRuWMAWyUTegDjAF0lEdAjwPiNS619nV9lChoBkdAWa+SwGGEf2gHTegDaAhHQI8G0gntv4x1fZQoaAZHQGN/HdGiHqNoB03oA2gIR0CPFNsUqQRxdX2UKGgGR0BimYR9PUKBaAdN6ANoCEdAjxwvJ7sv7HV9lChoBkdAXUTy08eS0WgHTegDaAhHQI8rNNN8E3d1fZQoaAZHQFmJrOZ9d/toB03oA2gIR0CPLAKIBRyfdX2UKGgGR0BgJcT101ZUaAdN6ANoCEdAjzlrSuyNXHV9lChoBkdAMC3IIWxhUmgHTTIBaAhHQI9B1DBuXNV1fZQoaAZHQGAbvva11GNoB03oA2gIR0CPTBbFjurqdX2UKGgGR0BdP9zCDVYqaAdN6ANoCEdAj0y2912aD3V9lChoBkdAZdGImgJ1JWgHTegDaAhHQI9OTR+jM3Z1fZQoaAZHQGTeAHVwxWVoB03oA2gIR0CPXXKq4pc5dX2UKGgGR0BJvKiGnGbTaAdN6ANoCEdAj2cH5aePJnV9lChoBkdAX7BWCEpRXWgHTegDaAhHQI97aVnmJWN1fZQoaAZHQFiP66J66atoB03oA2gIR0CPhYsH0K7adX2UKGgGR0BHGh4dIXj3aAdN6ANoCEdAj4XzPBzmwXV9lChoBkdAakUHxBmf5GgHTagBaAhHQI+osunMt9R1fZQoaAZHQFhMXO4XoDBoB03oA2gIR0CPs57F85S4dX2UKGgGR0Bgiz8WKuSwaAdN6ANoCEdAj7rNTcZccHV9lChoBkdAYSCrrgOz6mgHTegDaAhHQI/EBG8VYZF1fZQoaAZHQFm9BH09QoFoB03oA2gIR0CPyDkd3jdYdX2UKGgGR0Bbrx4IKMNuaAdN6ANoCEdAj9FYVh1DB3V9lChoBkdAW/9DzAeq72gHTegDaAhHQI/R3jp9qlB1fZQoaAZHQF9SrKNhmXhoB03oA2gIR0CP3RImw7kodX2UKGgGR0Bd/cOskpqiaAdN6ANoCEdAj+RPoNd7fHV9lChoBkdAZNDhcZ9/jWgHTegDaAhHQI/tP5BTn7p1fZQoaAZHQF2NTM7lq8FoB03oA2gIR0CP7gwFC9h7dX2UKGgGR0BZsglruYx+aAdN6ANoCEdAj/AG+9Jz1nV9lChoBkdAWdsNWluWKWgHTegDaAhHQJBdVPFefI11fZQoaAZHQFpo9US7GvRoB03oA2gIR0CQakWEK3NLdX2UKGgGR0Bb2rDQ7cO9aAdN6ANoCEdAkG/mITGo73V9lChoBkdAYZ4OGTLW7WgHTegDaAhHQJBwGx+rlvJ1fZQoaAZHQF3EyFfzBhxoB03oA2gIR0CQgRBomG/OdX2UKGgGR0BY7jMeOn2qaAdN6ANoCEdAkIa7RF7UonV9lChoBkdAQUIbKifxt2gHS/5oCEdAkIcrlNlAeXV9lChoBkdAW6EuTRplBmgHTegDaAhHQJCKbUiILw51fZQoaAZHQGkSldTo+wFoB03JAmgIR0CQirtlqagFdX2UKGgGR0BarKu0TlDGaAdN6ANoCEdAkI69QCSzPnV9lChoBkdAYxqHyEtdzGgHTegDaAhHQJCQpYNiH7B1fZQoaAZHQFo1S1mapgloB03oA2gIR0CQlKy/KyOadX2UKGgGR0BgnUzoEB8yaAdN6ANoCEdAkJToVIqb0HV9lChoBkdAGymXPZ7HAGgHTR0BaAhHQJCWJubZvk11fZQoaAZHQF3TkUKzAvdoB03oA2gIR0CQmXm/336AdX2UKGgGR0AaPjNpudf+aAdNFQFoCEdAkJvCgCfYjHV9lChoBkdAYNSArhBJI2gHTegDaAhHQJChVvAGjbl1fZQoaAZHQGHT3vH93r5oB03oA2gIR0CQoaYVZcLSdX2UKGgGR0Bi7Qt4A0bcaAdN6ANoCEdAkKJ8gQpWm3V9lChoBkdAaiMgi/wiJWgHTVcBaAhHQJClMIUrTYx1fZQoaAZHQFWnuMdcSoRoB03oA2gIR0CQroZAY51edX2UKGgGR0BCwqxC6YmcaAdNBgFoCEdAkLQ0JKJ2uHV9lChoBkdAYNwl0HQhOmgHTegDaAhHQJC22cI7eVN1fZQoaAZHQGMpjgqEvkBoB03oA2gIR0CQufF1B+nZdX2UKGgGR0AXifwqiGnGaAdNHwFoCEdAkMg5WV/tpnV9lChoBkdAX2uvpyIYWWgHTegDaAhHQJDMCFUQ0411fZQoaAZHQGPuhl18stloB03oA2gIR0CQzGg5BC2MdX2UKGgGR0BTxk0elsP8aAdN6ANoCEdAkM9NHH3lCHV9lChoBkdAX0phZyMkyGgHTegDaAhHQJDVPJlrdnF1fZQoaAZHQGFlHvc8DCBoB03oA2gIR0CQ2vuTRplCdX2UKGgGR0BelyhJyyUtaAdN6ANoCEdAkNtU9t/FznV9lChoBkdAYn94Z/CqImgHTegDaAhHQJDdF1oxpL51fZQoaAZHQGEZdIPK+ztoB03oA2gIR0CQ4d6oVEeAdX2UKGgGR0Bl2zr3TNMXaAdN6ANoCEdAkORZ5Rjz7XV9lChoBkdAV/2z7di2D2gHTegDaAhHQJDoyrT6SDB1fZQoaAZHQGSBFhXr+o9oB03oA2gIR0CQ6apeeFtbdX2UKGgGR0BiDXVoYekpaAdN6ANoCEdAkOuu76Hj63V9lChoBkdAX32yIHkcTGgHTegDaAhHQJFNhf/m1Y11fZQoaAZHQF+4kgOjIq9oB03oA2gIR0CRVyku6ErYdX2UKGgGR0BhTbXWe6I4aAdN6ANoCEdAkVq8ujASF3V9lChoBkdAbBXFkxyn1mgHTZ4BaAhHQJFfMA1ejVR1fZQoaAZHQFltKqGUOd5oB03oA2gIR0CRaVcL0BfbdX2UKGgGR0BkuZguyu6maAdN6ANoCEdAkW1Vk6Lfk3V9lChoBkdAZWwPT5O8CmgHTegDaAhHQJFttDKHO8l1fZQoaAZHQGIrs/Y8Md9oB03oA2gIR0CRcNEXLvCudX2UKGgGR0BjINGG21D0aAdN6ANoCEdAkXdSD7Ikq3V9lChoBkdAY9eARTS9d2gHTegDaAhHQJF9wKKHfuV1fZQoaAZHQGD+IYvWYnhoB03oA2gIR0CRfiZZSvTxdX2UKGgGR0BePzjBEa2naAdN6ANoCEdAkYAEGNaQm3V9lChoBkdAXclbkfcN6WgHTegDaAhHQJGFCzyBkI51fZQoaAZHQE1n++dsi0RoB03oA2gIR0CRh6ztCzC2dX2UKGgGR0BkFSC6H0sfaAdN6ANoCEdAkY1y9EkSmXV9lChoBkdAW3GbBoEjgWgHTegDaAhHQJGPzvd/J/51fZQoaAZHQEI5rIo3JgdoB0vxaAhHQJGQ+XLNfPZ1fZQoaAZHQDS0Oy3Td+JoB00dAWgIR0CRmAiZv1lHdX2UKGgGR0Bgdc/yGzrvaAdN6ANoCEdAkZiUBOpKjHV9lChoBkdAYqNPva11GWgHTegDaAhHQJGh1ODaoMt1fZQoaAZHQGGo1WjoIOZoB03oA2gIR0CRpT++/QBxdX2UKGgGR0BicvY6GQCCaAdN6ANoCEdAkamXWjGkvnV9lChoBkdAEYyE+PikwmgHS/hoCEdAkapx0dRzinV9lChoBkdAQc7X18LKFWgHTegDaAhHQJG0yVUuL751fZQoaAZHQGB4h7E5yU9oB03oA2gIR0CRuajz7MxHdX2UKGgGR0BfgyO3lS0jaAdN6ANoCEdAkboVwT/Q0HV9lChoBkdAXHH/ZM+NcWgHTegDaAhHQJG9rai9Iwx1fZQoaAZHQGAjyUkfLcNoB03oA2gIR0CRws+u/1xsdX2UKGgGR0BesxmkFfReaAdN6ANoCEdAkcco2sJY1nV9lChoBkdAYGul+mWMTGgHTegDaAhHQJHHanpB5X51fZQoaAZHQFujUmD15B1oB03oA2gIR0CRzphWYF7ldX2UKGgGR0BcvBWHUMG5aAdN6ANoCEdAkdQHIlt0m3V9lChoBkdAXZ7rZ8KG+WgHTegDaAhHQJHWCn0kGA11fZQoaAZHQF/Qc0cfeUJoB03oA2gIR0CR1wpG4I8hdX2UKGgGR0BguQzrNW2gaAdN6ANoCEdAkdzsWfseGXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 160,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc224cfc29c1aebb2721c5ccceddf9accd7c26d2cab61f37d112bd132dd4379b
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e0c715d3ea58cf9339e3d9d577c289ae00fba77badeb7402ab8f107eb9242b0
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (176 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 226.8037895, "std_reward": 19.213077362266397, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-08T21:37:09.289201"}
|