Dragunflie-420
commited on
Commit
•
9e9d22a
1
Parent(s):
f2b3292
Upload sample.py
Browse files
sample.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""
|
8 |
+
Sample new images from a pre-trained DiT.
|
9 |
+
"""
|
10 |
+
import torch
|
11 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
12 |
+
torch.backends.cudnn.allow_tf32 = True
|
13 |
+
from torchvision.utils import save_image
|
14 |
+
from diffusion import create_diffusion
|
15 |
+
from diffusers.models import AutoencoderKL
|
16 |
+
from download import find_model
|
17 |
+
from models import DiT_models
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
|
21 |
+
def main(args):
|
22 |
+
# Setup PyTorch:
|
23 |
+
torch.manual_seed(args.seed)
|
24 |
+
torch.set_grad_enabled(False)
|
25 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
+
|
27 |
+
if args.ckpt is None:
|
28 |
+
assert args.model == "DiT-XL/2", "Only DiT-XL/2 models are available for auto-download."
|
29 |
+
assert args.image_size in [256, 512]
|
30 |
+
assert args.num_classes == 1000
|
31 |
+
|
32 |
+
# Load model:
|
33 |
+
latent_size = args.image_size // 8
|
34 |
+
model = DiT_models[args.model](
|
35 |
+
input_size=latent_size,
|
36 |
+
num_classes=args.num_classes
|
37 |
+
).to(device)
|
38 |
+
# Auto-download a pre-trained model or load a custom DiT checkpoint from train.py:
|
39 |
+
ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt"
|
40 |
+
state_dict = find_model(ckpt_path)
|
41 |
+
model.load_state_dict(state_dict)
|
42 |
+
model.eval() # important!
|
43 |
+
diffusion = create_diffusion(str(args.num_sampling_steps))
|
44 |
+
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device)
|
45 |
+
|
46 |
+
# Labels to condition the model with (feel free to change):
|
47 |
+
class_labels = [207, 360, 387, 974, 88, 979, 417, 279]
|
48 |
+
|
49 |
+
# Create sampling noise:
|
50 |
+
n = len(class_labels)
|
51 |
+
z = torch.randn(n, 4, latent_size, latent_size, device=device)
|
52 |
+
y = torch.tensor(class_labels, device=device)
|
53 |
+
|
54 |
+
# Setup classifier-free guidance:
|
55 |
+
z = torch.cat([z, z], 0)
|
56 |
+
y_null = torch.tensor([1000] * n, device=device)
|
57 |
+
y = torch.cat([y, y_null], 0)
|
58 |
+
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale)
|
59 |
+
|
60 |
+
# Sample images:
|
61 |
+
samples = diffusion.p_sample_loop(
|
62 |
+
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
|
63 |
+
)
|
64 |
+
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
|
65 |
+
samples = vae.decode(samples / 0.18215).sample
|
66 |
+
|
67 |
+
# Save and display images:
|
68 |
+
save_image(samples, "sample.png", nrow=4, normalize=True, value_range=(-1, 1))
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
parser = argparse.ArgumentParser()
|
73 |
+
parser.add_argument("--model", type=str, choices=list(DiT_models.keys()), default="DiT-XL/2")
|
74 |
+
parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="mse")
|
75 |
+
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
|
76 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
77 |
+
parser.add_argument("--cfg-scale", type=float, default=4.0)
|
78 |
+
parser.add_argument("--num-sampling-steps", type=int, default=250)
|
79 |
+
parser.add_argument("--seed", type=int, default=0)
|
80 |
+
parser.add_argument("--ckpt", type=str, default=None,
|
81 |
+
help="Optional path to a DiT checkpoint (default: auto-download a pre-trained DiT-XL/2 model).")
|
82 |
+
args = parser.parse_args()
|
83 |
+
main(args)
|