|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Samples a large number of images from a pre-trained DiT model using DDP. |
|
Subsequently saves a .npz file that can be used to compute FID and other |
|
evaluation metrics via the ADM repo: https://github.com/openai/guided-diffusion/tree/main/evaluations |
|
|
|
For a simple single-GPU/CPU sampling script, see sample.py. |
|
""" |
|
import torch |
|
import torch.distributed as dist |
|
from models import DiT_models |
|
from download import find_model |
|
from diffusion import create_diffusion |
|
from diffusers.models import AutoencoderKL |
|
from tqdm import tqdm |
|
import os |
|
from PIL import Image |
|
import numpy as np |
|
import math |
|
import argparse |
|
|
|
|
|
def create_npz_from_sample_folder(sample_dir, num=50_000): |
|
""" |
|
Builds a single .npz file from a folder of .png samples. |
|
""" |
|
samples = [] |
|
for i in tqdm(range(num), desc="Building .npz file from samples"): |
|
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png") |
|
sample_np = np.asarray(sample_pil).astype(np.uint8) |
|
samples.append(sample_np) |
|
samples = np.stack(samples) |
|
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3) |
|
npz_path = f"{sample_dir}.npz" |
|
np.savez(npz_path, arr_0=samples) |
|
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].") |
|
return npz_path |
|
|
|
|
|
def main(args): |
|
""" |
|
Run sampling. |
|
""" |
|
torch.backends.cuda.matmul.allow_tf32 = args.tf32 |
|
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage" |
|
torch.set_grad_enabled(False) |
|
|
|
|
|
dist.init_process_group("nccl") |
|
rank = dist.get_rank() |
|
device = rank % torch.cuda.device_count() |
|
seed = args.global_seed * dist.get_world_size() + rank |
|
torch.manual_seed(seed) |
|
torch.cuda.set_device(device) |
|
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") |
|
|
|
if args.ckpt is None: |
|
assert args.model == "DiT-XL/2", "Only DiT-XL/2 models are available for auto-download." |
|
assert args.image_size in [256, 512] |
|
assert args.num_classes == 1000 |
|
|
|
|
|
latent_size = args.image_size // 8 |
|
model = DiT_models[args.model]( |
|
input_size=latent_size, |
|
num_classes=args.num_classes |
|
).to(device) |
|
|
|
ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt" |
|
state_dict = find_model(ckpt_path) |
|
model.load_state_dict(state_dict) |
|
model.eval() |
|
diffusion = create_diffusion(str(args.num_sampling_steps)) |
|
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device) |
|
assert args.cfg_scale >= 1.0, "In almost all cases, cfg_scale be >= 1.0" |
|
using_cfg = args.cfg_scale > 1.0 |
|
|
|
|
|
model_string_name = args.model.replace("/", "-") |
|
ckpt_string_name = os.path.basename(args.ckpt).replace(".pt", "") if args.ckpt else "pretrained" |
|
folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-vae-{args.vae}-" \ |
|
f"cfg-{args.cfg_scale}-seed-{args.global_seed}" |
|
sample_folder_dir = f"{args.sample_dir}/{folder_name}" |
|
if rank == 0: |
|
os.makedirs(sample_folder_dir, exist_ok=True) |
|
print(f"Saving .png samples at {sample_folder_dir}") |
|
dist.barrier() |
|
|
|
|
|
n = args.per_proc_batch_size |
|
global_batch_size = n * dist.get_world_size() |
|
|
|
total_samples = int(math.ceil(args.num_fid_samples / global_batch_size) * global_batch_size) |
|
if rank == 0: |
|
print(f"Total number of images that will be sampled: {total_samples}") |
|
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size" |
|
samples_needed_this_gpu = int(total_samples // dist.get_world_size()) |
|
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size" |
|
iterations = int(samples_needed_this_gpu // n) |
|
pbar = range(iterations) |
|
pbar = tqdm(pbar) if rank == 0 else pbar |
|
total = 0 |
|
for _ in pbar: |
|
|
|
z = torch.randn(n, model.in_channels, latent_size, latent_size, device=device) |
|
y = torch.randint(0, args.num_classes, (n,), device=device) |
|
|
|
|
|
if using_cfg: |
|
z = torch.cat([z, z], 0) |
|
y_null = torch.tensor([1000] * n, device=device) |
|
y = torch.cat([y, y_null], 0) |
|
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale) |
|
sample_fn = model.forward_with_cfg |
|
else: |
|
model_kwargs = dict(y=y) |
|
sample_fn = model.forward |
|
|
|
|
|
samples = diffusion.p_sample_loop( |
|
sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=False, device=device |
|
) |
|
if using_cfg: |
|
samples, _ = samples.chunk(2, dim=0) |
|
|
|
samples = vae.decode(samples / 0.18215).sample |
|
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy() |
|
|
|
|
|
for i, sample in enumerate(samples): |
|
index = i * dist.get_world_size() + rank + total |
|
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png") |
|
total += global_batch_size |
|
|
|
|
|
dist.barrier() |
|
if rank == 0: |
|
create_npz_from_sample_folder(sample_folder_dir, args.num_fid_samples) |
|
print("Done.") |
|
dist.barrier() |
|
dist.destroy_process_group() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model", type=str, choices=list(DiT_models.keys()), default="DiT-XL/2") |
|
parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="ema") |
|
parser.add_argument("--sample-dir", type=str, default="samples") |
|
parser.add_argument("--per-proc-batch-size", type=int, default=32) |
|
parser.add_argument("--num-fid-samples", type=int, default=50_000) |
|
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256) |
|
parser.add_argument("--num-classes", type=int, default=1000) |
|
parser.add_argument("--cfg-scale", type=float, default=1.5) |
|
parser.add_argument("--num-sampling-steps", type=int, default=250) |
|
parser.add_argument("--global-seed", type=int, default=0) |
|
parser.add_argument("--tf32", action=argparse.BooleanOptionalAction, default=True, |
|
help="By default, use TF32 matmuls. This massively accelerates sampling on Ampere GPUs.") |
|
parser.add_argument("--ckpt", type=str, default=None, |
|
help="Optional path to a DiT checkpoint (default: auto-download a pre-trained DiT-XL/2 model).") |
|
args = parser.parse_args() |
|
main(args) |