DragonProgrammer commited on
Commit
abb4f73
1 Parent(s): 1f4f5c9

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1043.24 +/- 178.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0cab4e64c439fe47d3e2b9477d6cb520a4c63476ef185e6531954026590b7c0
3
+ size 129274
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3dd2923a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3dd292430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3dd2924c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3dd292550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd3dd2925e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd3dd292670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd3dd292700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3dd292790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd3dd292820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3dd2928b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3dd292940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3dd2929d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd3dd286930>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 702196,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677714208711606869,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJDV0b26WYE+l8jkPtPysz4e1vI+U225P7eQkD/hDrO+QuPmPmnfOb4dfjC/7YGsvIkbQb8X+IY/KnE2v3xlCb+4E0i/Zyk3vtFpcj8qC/48WAeNPxjM+b5LtSG+rsWGPvQvyb+kP+Y+YxPKPqVAGT8kzVA/2C4oP/lBYz7Gv6E/nUINQOW8kL8heQk/nnqAv+wDGD8CtjE/w/Yxv9AlQr/70H4/YOOKP0phKz5uP7U+xR7qvoUVoD9mSTA/5JLfv1gy7L71Giw/okMyPzgrxT30L8m/pD/mPmMTyj6lQBk/7CQGv5g4fb+FDNU+AFg5P11h7T7W91U/2xEzP7Gh0ryp81I/tz98v2MvMr/YmXE9U02uv8evij/uHHy+yFb5vjOwnr1oWYK+ocBQPxY+qD9NU1e+V9BAv2mPL7+CvkI+9C/Jv6Q/5j5jE8o+pUAZP1nT6j7lIRW/NXAKP3MGFj9Urr69Q2++vvoX9r6h1ny/HAFDPmjMCD/3MSo/AJJeP1d4d71dBZs+5lFSPz2ONDoK16W+L7xjvyX7LD7bHQVAu0GnP3mmGL/VIEG/rnuyP4PfIj+kP+Y+YxPKPinR1b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADAoxY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAK0awugAAAAAASNm/AAAAAFekg70AAAAAkOvpPwAAAAAEpok9AAAAAH4F3j8AAAAAfbzCvQAAAABeL/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/YFUtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAUW2LsAAAAAj5/jvwAAAACZCKu9AAAAAG2X2T8AAAAAnIxkvQAAAACtxeY/AAAAAG9FAr4AAAAAJZ/gvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBLUTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcTF28AAAAAMYa/L8AAAAAO1LuvQAAAAAKj/A/AAAAAACBzz0AAAAAv8HePwAAAABQ5w69AAAAAJMA478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrzOy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5f8muwAAAAAYFfq/AAAAANZj8L0AAAAAqhPlPwAAAABIwAm+AAAAAPpqAEAAAAAAUO1MPQAAAABFH9y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.6489119999999999,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIurv0/W1+mMAWyUTegDjAF0lEdAlUw5xvNu+HV9lChoBkdAihYQljVhC2gHTegDaAhHQJVObX7Lt/p1fZQoaAZHQI1LSxA0KqpoB03oA2gIR0CVT/PEbYK6dX2UKGgGR0CLJNi6QNkOaAdN6ANoCEdAlV04RywOfHV9lChoBkdAjNP/u9eyA2gHTegDaAhHQJVpvM9r4351fZQoaAZHQIabCODJ2dNoB03oA2gIR0CVa/ISUTtcdX2UKGgGR0CJ46Xt0FKTaAdN6ANoCEdAlW1y5NGmUHV9lChoBkdAiY8fQ8fV7WgHTegDaAhHQJWB0raufVZ1fZQoaAZHQIjlgWDYh+xoB03oA2gIR0CVjq/I8yN5dX2UKGgGR0CO8PpLVWjoaAdN6ANoCEdAlZDNoi9qUXV9lChoBkdAjdSMGHHmzWgHTegDaAhHQJWSUEEC/491fZQoaAZHQI8Q6pPykKxoB03oA2gIR0CVnzcVxjridX2UKGgGR0CIwFh1klNUaAdN6ANoCEdAlavjND+irXV9lChoBkdAi7LMzVMEimgHTegDaAhHQJWvTFCLMs91fZQoaAZHQIr2rsMRYihoB03oA2gIR0CVsZeJHiFTdX2UKGgGR0COsAaNuLrHaAdN6ANoCEdAlcRgf+0gKXV9lChoBkdAjOpyZKFqSGgHTegDaAhHQJXQcx46fap1fZQoaAZHQJGLphPTG5toB03oA2gIR0CV0pilzltCdX2UKGgGR0CQOBu4PPLQaAdN6ANoCEdAldQSMglniHV9lChoBkdAjsyrPdEb52gHTegDaAhHQJXhH9AHE/B1fZQoaAZHQI6+YnBtUGVoB03oA2gIR0CV8IaM72csdX2UKGgGR0CM8tnjABT5aAdN6ANoCEdAlfQ+fmLcbnV9lChoBkdAkmEn9FWn0mgHTegDaAhHQJX2vvphWo51fZQoaAZHQIca4Ap8WsRoB03oA2gIR0CWBijZcs19dX2UKGgGR0CMlKZTAFgVaAdN6ANoCEdAlhJNQ40dinV9lChoBkdAjz5Ne+mFamgHTegDaAhHQJYUYMd92HN1fZQoaAZHQJEKu+36Q/5oB03oA2gIR0CWFeNfPX05dX2UKGgGR0CSQViobXHzaAdN6ANoCEdAliL9rXUYsXV9lChoBkdAiQktCRfWtmgHTegDaAhHQJY2E7Pppvh1fZQoaAZHQI7K9VYISlFoB03oA2gIR0CWOXNYbKigdX2UKGgGR0CFNDDWsijdaAdN6ANoCEdAljsGg3974XV9lChoBkdAksXFCCz1LGgHTegDaAhHQJZIAd5prUN1fZQoaAZHQJJ/fns9jgBoB03oA2gIR0CWVEhFVktmdX2UKGgGR0CTzlWS2Yv4aAdN6ANoCEdAllaLGNrCWXV9lChoBkdAksg3bmEGq2gHTegDaAhHQJZYKKxcE/11fZQoaAZHQJC395nlGPRoB03oA2gIR0CWZ5ooNNJwdX2UKGgGR0CNmS+ajN6gaAdN6ANoCEdAlnlChBZ6lnV9lChoBkdAkHKHtfG+9WgHTegDaAhHQJZ7Y7YChex1fZQoaAZHQJDalTVDrqtoB03oA2gIR0CWfNLXL/0edX2UKGgGR0CSOW6XjU/faAdN6ANoCEdAlon6B3A2ynV9lChoBkdAk6B+p4rz5GgHTegDaAhHQJaWFolD4QB1fZQoaAZHQJIPI6QvHtFoB03oA2gIR0CWmEt0FKTTdX2UKGgGR0CSStnEVFhHaAdN6ANoCEdAlpnCXIEKV3V9lChoBkdAk5Pedf9gnmgHTegDaAhHQJas5yeZof11fZQoaAZHQJBVRa1TisJoB03oA2gIR0CWuuJkoWpIdX2UKGgGR0CQqst+TeO5aAdN6ANoCEdAlr0hH9WIXXV9lChoBkdAksiEU0vXb2gHTegDaAhHQJa+kq6OHWV1fZQoaAZHQJNNl7b+Lm9oB03oA2gIR0CWy02rXDm9dX2UKGgGR0CSms8eCCjDaAdN6ANoCEdAltep93KSxXV9lChoBkdAk3xm1+iJwmgHTegDaAhHQJbZ7UNKAax1fZQoaAZHQJGRCW8h9stoB03oA2gIR0CW3DRv3rUtdX2UKGgGR0COOSyi22G7aAdN6ANoCEdAlvADmW+oL3V9lChoBkdAj+gY2jwhGGgHTegDaAhHQJb8EiW3Sa51fZQoaAZHQJD5W/ATIvJoB03oA2gIR0CW/iIVuaWpdX2UKGgGR0CIpwmJFb3XaAdN6ANoCEdAlv+TND+irXV9lChoBkdAjwPL61stTWgHTegDaAhHQJcMn642CNF1fZQoaAZHQITo/kPtlZpoB03oA2gIR0CXGrF23azvdX2UKGgGR0CJUhVmSQo1aAdN6ANoCEdAlx5IlUp/gHV9lChoBkdAjBr45DJEIGgHTegDaAhHQJcg1V4oqkN1fZQoaAZHQJAGsH4XXRRoB03oA2gIR0CXMbSv1UVBdX2UKGgGR0CSqN+pOvdNaAdN6ANoCEdAlz4zdk8RtnV9lChoBkdAh82a4tpVTGgHTegDaAhHQJdAafh/Aj91fZQoaAZHQJM9W+PBBRhoB03oA2gIR0CXQdpSJj2BdX2UKGgGR0CRHYOlfqoqaAdN6ANoCEdAl074cBEKE3V9lChoBkdAkRKN9YwIt2gHTegDaAhHQJdgkdELH+91fZQoaAZHQJBgt4C6pYNoB03oA2gIR0CXZCWJaaCudX2UKGgGR0CQ3/lyR0U5aAdN6ANoCEdAl2ag/keZHHV9lChoBkdAkm9oDHOryWgHTegDaAhHQJd242/BWPt1fZQoaAZHQJAA4EyLyc1oB03oA2gIR0CXiDef7JnydX2UKGgGR0CCqrVbRne0aAdN6ANoCEdAl4p4Q8OkL3V9lChoBkdAgCF96kZaV2gHTegDaAhHQJeL+Z2IO6N1fZQoaAZHQJGJOS0Sh8JoB03oA2gIR0CXn7uxKQJYdX2UKGgGR0CQR+xnWattaAdN6ANoCEdAl61ShBZ6lnV9lChoBkdAkCgut4iX6mgHTegDaAhHQJevcfjjrAx1fZQoaAZHQIxmjiKiwjdoB03oA2gIR0CXsPdC3PRidX2UKGgGR0CQCJzDGcWkaAdN6ANoCEdAl722FJxvN3V9lChoBkdAjHwBmwqy4WgHTegDaAhHQJfJ9dxAB1d1fZQoaAZHQIwx5aFEiMZoB03oA2gIR0CXzH61stTUdX2UKGgGR0CPpNutOmBOaAdN6ANoCEdAl87bkCFK03V9lChoBkdAkN/N/BnBcmgHTegDaAhHQJfiRqVQhwF1fZQoaAZHQJGYAKeCkGloB03oA2gIR0CX7lz3RG+cdX2UKGgGR0CN3aW+GoJiaAdN6ANoCEdAl/B+LWI42nV9lChoBkdAj7mchcJMQGgHTegDaAhHQJfx+SGJvYR1fZQoaAZHQJIGvvx6OYJoB03oA2gIR0CX/xGmUGFBdX2UKGgGR0CFMlLuhK15aAdN6ANoCEdAmA0DQZ4wAXV9lChoBkdAi+l/8/D+BGgHTegDaAhHQJgQluXNTtN1fZQoaAZHQJC4k7ihnJ1oB03oA2gIR0CYEwrdWQwLdX2UKGgGR0CM1PQm/nGLaAdN6ANoCEdAmCO3hbW3B3V9lChoBkdAfmU7+T/yXmgHTegDaAhHQJgv83EQ5FR1fZQoaAZHQIwQETN+so5oB03oA2gIR0CYMg5YHPeIdX2UKGgGR0CM5Y02LpA2aAdN6ANoCEdAmDOCFoL5RHV9lChoBkdAizTzlDF6zGgHTegDaAhHQJhAycQRPGh1fZQoaAZHQI+rQjfNzKdoB03oA2gIR0CYUo96Tnq3dX2UKGgGR0CP1nvcafjCaAdN6ANoCEdAmFZC5Zr57HV9lChoBkdAkMwy8rZrYWgHTegDaAhHQJhYlX1anrJ1fZQoaAZHQJBYyIk7fYVoB03oA2gIR0CYZVOLiuMddX2UKGgGR0CRcQBHTZxraAdN6ANoCEdAmHFygXdj5XV9lChoBkdAkeE+fZmI02gHTegDaAhHQJhzkovzvql1fZQoaAZHQJF589X9zfdoB03oA2gIR0CYdQ2Rq46PdX2UKGgGR0CSd5VM23rlaAdN6ANoCEdAmIL/HDJlrnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 21943,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0732fd37aac258e620f5d26af8451e0552fa3f55bb31a22ea17c1e742af567b
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:504f6fdbeac613af87eea9aa70757d9325c23f5b9c57a72361b9beed4fa94741
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3dd2923a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3dd292430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3dd2924c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3dd292550>", "_build": "<function ActorCriticPolicy._build at 0x7fd3dd2925e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd3dd292670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd3dd292700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3dd292790>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd3dd292820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3dd2928b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3dd292940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3dd2929d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd3dd286930>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 702196, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677714208711606869, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJDV0b26WYE+l8jkPtPysz4e1vI+U225P7eQkD/hDrO+QuPmPmnfOb4dfjC/7YGsvIkbQb8X+IY/KnE2v3xlCb+4E0i/Zyk3vtFpcj8qC/48WAeNPxjM+b5LtSG+rsWGPvQvyb+kP+Y+YxPKPqVAGT8kzVA/2C4oP/lBYz7Gv6E/nUINQOW8kL8heQk/nnqAv+wDGD8CtjE/w/Yxv9AlQr/70H4/YOOKP0phKz5uP7U+xR7qvoUVoD9mSTA/5JLfv1gy7L71Giw/okMyPzgrxT30L8m/pD/mPmMTyj6lQBk/7CQGv5g4fb+FDNU+AFg5P11h7T7W91U/2xEzP7Gh0ryp81I/tz98v2MvMr/YmXE9U02uv8evij/uHHy+yFb5vjOwnr1oWYK+ocBQPxY+qD9NU1e+V9BAv2mPL7+CvkI+9C/Jv6Q/5j5jE8o+pUAZP1nT6j7lIRW/NXAKP3MGFj9Urr69Q2++vvoX9r6h1ny/HAFDPmjMCD/3MSo/AJJeP1d4d71dBZs+5lFSPz2ONDoK16W+L7xjvyX7LD7bHQVAu0GnP3mmGL/VIEG/rnuyP4PfIj+kP+Y+YxPKPinR1b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADAoxY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAK0awugAAAAAASNm/AAAAAFekg70AAAAAkOvpPwAAAAAEpok9AAAAAH4F3j8AAAAAfbzCvQAAAABeL/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/YFUtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAUW2LsAAAAAj5/jvwAAAACZCKu9AAAAAG2X2T8AAAAAnIxkvQAAAACtxeY/AAAAAG9FAr4AAAAAJZ/gvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBLUTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcTF28AAAAAMYa/L8AAAAAO1LuvQAAAAAKj/A/AAAAAACBzz0AAAAAv8HePwAAAABQ5w69AAAAAJMA478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrzOy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5f8muwAAAAAYFfq/AAAAANZj8L0AAAAAqhPlPwAAAABIwAm+AAAAAPpqAEAAAAAAUO1MPQAAAABFH9y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.6489119999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIurv0/W1+mMAWyUTegDjAF0lEdAlUw5xvNu+HV9lChoBkdAihYQljVhC2gHTegDaAhHQJVObX7Lt/p1fZQoaAZHQI1LSxA0KqpoB03oA2gIR0CVT/PEbYK6dX2UKGgGR0CLJNi6QNkOaAdN6ANoCEdAlV04RywOfHV9lChoBkdAjNP/u9eyA2gHTegDaAhHQJVpvM9r4351fZQoaAZHQIabCODJ2dNoB03oA2gIR0CVa/ISUTtcdX2UKGgGR0CJ46Xt0FKTaAdN6ANoCEdAlW1y5NGmUHV9lChoBkdAiY8fQ8fV7WgHTegDaAhHQJWB0raufVZ1fZQoaAZHQIjlgWDYh+xoB03oA2gIR0CVjq/I8yN5dX2UKGgGR0CO8PpLVWjoaAdN6ANoCEdAlZDNoi9qUXV9lChoBkdAjdSMGHHmzWgHTegDaAhHQJWSUEEC/491fZQoaAZHQI8Q6pPykKxoB03oA2gIR0CVnzcVxjridX2UKGgGR0CIwFh1klNUaAdN6ANoCEdAlavjND+irXV9lChoBkdAi7LMzVMEimgHTegDaAhHQJWvTFCLMs91fZQoaAZHQIr2rsMRYihoB03oA2gIR0CVsZeJHiFTdX2UKGgGR0COsAaNuLrHaAdN6ANoCEdAlcRgf+0gKXV9lChoBkdAjOpyZKFqSGgHTegDaAhHQJXQcx46fap1fZQoaAZHQJGLphPTG5toB03oA2gIR0CV0pilzltCdX2UKGgGR0CQOBu4PPLQaAdN6ANoCEdAldQSMglniHV9lChoBkdAjsyrPdEb52gHTegDaAhHQJXhH9AHE/B1fZQoaAZHQI6+YnBtUGVoB03oA2gIR0CV8IaM72csdX2UKGgGR0CM8tnjABT5aAdN6ANoCEdAlfQ+fmLcbnV9lChoBkdAkmEn9FWn0mgHTegDaAhHQJX2vvphWo51fZQoaAZHQIca4Ap8WsRoB03oA2gIR0CWBijZcs19dX2UKGgGR0CMlKZTAFgVaAdN6ANoCEdAlhJNQ40dinV9lChoBkdAjz5Ne+mFamgHTegDaAhHQJYUYMd92HN1fZQoaAZHQJEKu+36Q/5oB03oA2gIR0CWFeNfPX05dX2UKGgGR0CSQViobXHzaAdN6ANoCEdAliL9rXUYsXV9lChoBkdAiQktCRfWtmgHTegDaAhHQJY2E7Pppvh1fZQoaAZHQI7K9VYISlFoB03oA2gIR0CWOXNYbKigdX2UKGgGR0CFNDDWsijdaAdN6ANoCEdAljsGg3974XV9lChoBkdAksXFCCz1LGgHTegDaAhHQJZIAd5prUN1fZQoaAZHQJJ/fns9jgBoB03oA2gIR0CWVEhFVktmdX2UKGgGR0CTzlWS2Yv4aAdN6ANoCEdAllaLGNrCWXV9lChoBkdAksg3bmEGq2gHTegDaAhHQJZYKKxcE/11fZQoaAZHQJC395nlGPRoB03oA2gIR0CWZ5ooNNJwdX2UKGgGR0CNmS+ajN6gaAdN6ANoCEdAlnlChBZ6lnV9lChoBkdAkHKHtfG+9WgHTegDaAhHQJZ7Y7YChex1fZQoaAZHQJDalTVDrqtoB03oA2gIR0CWfNLXL/0edX2UKGgGR0CSOW6XjU/faAdN6ANoCEdAlon6B3A2ynV9lChoBkdAk6B+p4rz5GgHTegDaAhHQJaWFolD4QB1fZQoaAZHQJIPI6QvHtFoB03oA2gIR0CWmEt0FKTTdX2UKGgGR0CSStnEVFhHaAdN6ANoCEdAlpnCXIEKV3V9lChoBkdAk5Pedf9gnmgHTegDaAhHQJas5yeZof11fZQoaAZHQJBVRa1TisJoB03oA2gIR0CWuuJkoWpIdX2UKGgGR0CQqst+TeO5aAdN6ANoCEdAlr0hH9WIXXV9lChoBkdAksiEU0vXb2gHTegDaAhHQJa+kq6OHWV1fZQoaAZHQJNNl7b+Lm9oB03oA2gIR0CWy02rXDm9dX2UKGgGR0CSms8eCCjDaAdN6ANoCEdAltep93KSxXV9lChoBkdAk3xm1+iJwmgHTegDaAhHQJbZ7UNKAax1fZQoaAZHQJGRCW8h9stoB03oA2gIR0CW3DRv3rUtdX2UKGgGR0COOSyi22G7aAdN6ANoCEdAlvADmW+oL3V9lChoBkdAj+gY2jwhGGgHTegDaAhHQJb8EiW3Sa51fZQoaAZHQJD5W/ATIvJoB03oA2gIR0CW/iIVuaWpdX2UKGgGR0CIpwmJFb3XaAdN6ANoCEdAlv+TND+irXV9lChoBkdAjwPL61stTWgHTegDaAhHQJcMn642CNF1fZQoaAZHQITo/kPtlZpoB03oA2gIR0CXGrF23azvdX2UKGgGR0CJUhVmSQo1aAdN6ANoCEdAlx5IlUp/gHV9lChoBkdAjBr45DJEIGgHTegDaAhHQJcg1V4oqkN1fZQoaAZHQJAGsH4XXRRoB03oA2gIR0CXMbSv1UVBdX2UKGgGR0CSqN+pOvdNaAdN6ANoCEdAlz4zdk8RtnV9lChoBkdAh82a4tpVTGgHTegDaAhHQJdAafh/Aj91fZQoaAZHQJM9W+PBBRhoB03oA2gIR0CXQdpSJj2BdX2UKGgGR0CRHYOlfqoqaAdN6ANoCEdAl074cBEKE3V9lChoBkdAkRKN9YwIt2gHTegDaAhHQJdgkdELH+91fZQoaAZHQJBgt4C6pYNoB03oA2gIR0CXZCWJaaCudX2UKGgGR0CQ3/lyR0U5aAdN6ANoCEdAl2ag/keZHHV9lChoBkdAkm9oDHOryWgHTegDaAhHQJd242/BWPt1fZQoaAZHQJAA4EyLyc1oB03oA2gIR0CXiDef7JnydX2UKGgGR0CCqrVbRne0aAdN6ANoCEdAl4p4Q8OkL3V9lChoBkdAgCF96kZaV2gHTegDaAhHQJeL+Z2IO6N1fZQoaAZHQJGJOS0Sh8JoB03oA2gIR0CXn7uxKQJYdX2UKGgGR0CQR+xnWattaAdN6ANoCEdAl61ShBZ6lnV9lChoBkdAkCgut4iX6mgHTegDaAhHQJevcfjjrAx1fZQoaAZHQIxmjiKiwjdoB03oA2gIR0CXsPdC3PRidX2UKGgGR0CQCJzDGcWkaAdN6ANoCEdAl722FJxvN3V9lChoBkdAjHwBmwqy4WgHTegDaAhHQJfJ9dxAB1d1fZQoaAZHQIwx5aFEiMZoB03oA2gIR0CXzH61stTUdX2UKGgGR0CPpNutOmBOaAdN6ANoCEdAl87bkCFK03V9lChoBkdAkN/N/BnBcmgHTegDaAhHQJfiRqVQhwF1fZQoaAZHQJGYAKeCkGloB03oA2gIR0CX7lz3RG+cdX2UKGgGR0CN3aW+GoJiaAdN6ANoCEdAl/B+LWI42nV9lChoBkdAj7mchcJMQGgHTegDaAhHQJfx+SGJvYR1fZQoaAZHQJIGvvx6OYJoB03oA2gIR0CX/xGmUGFBdX2UKGgGR0CFMlLuhK15aAdN6ANoCEdAmA0DQZ4wAXV9lChoBkdAi+l/8/D+BGgHTegDaAhHQJgQluXNTtN1fZQoaAZHQJC4k7ihnJ1oB03oA2gIR0CYEwrdWQwLdX2UKGgGR0CM1PQm/nGLaAdN6ANoCEdAmCO3hbW3B3V9lChoBkdAfmU7+T/yXmgHTegDaAhHQJgv83EQ5FR1fZQoaAZHQIwQETN+so5oB03oA2gIR0CYMg5YHPeIdX2UKGgGR0CM5Y02LpA2aAdN6ANoCEdAmDOCFoL5RHV9lChoBkdAizTzlDF6zGgHTegDaAhHQJhAycQRPGh1fZQoaAZHQI+rQjfNzKdoB03oA2gIR0CYUo96Tnq3dX2UKGgGR0CP1nvcafjCaAdN6ANoCEdAmFZC5Zr57HV9lChoBkdAkMwy8rZrYWgHTegDaAhHQJhYlX1anrJ1fZQoaAZHQJBYyIk7fYVoB03oA2gIR0CYZVOLiuMddX2UKGgGR0CRcQBHTZxraAdN6ANoCEdAmHFygXdj5XV9lChoBkdAkeE+fZmI02gHTegDaAhHQJhzkovzvql1fZQoaAZHQJF589X9zfdoB03oA2gIR0CYdQ2Rq46PdX2UKGgGR0CSd5VM23rlaAdN6ANoCEdAmIL/HDJlrnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 21943, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (795 kB). View file
results.json ADDED
@@ -0,0 +1 @@
 
1
+ {"mean_reward": 1043.244297127938, "std_reward": 178.6674481033874, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T00:11:43.855151"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fd57a56850d188739ada65fb90b629888705f152fd537364b719dc098bd31cd
3
+ size 2136