|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import contextlib |
|
|
import io |
|
|
import math |
|
|
import time |
|
|
from copy import deepcopy |
|
|
from pathlib import Path |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from torch.utils.data import DataLoader, Dataset |
|
|
|
|
|
from accelerate import Accelerator |
|
|
from accelerate.data_loader import SeedableRandomSampler, prepare_data_loader |
|
|
from accelerate.state import AcceleratorState |
|
|
from accelerate.test_utils import RegressionDataset, are_the_same_tensors |
|
|
from accelerate.utils import ( |
|
|
DataLoaderConfiguration, |
|
|
DistributedType, |
|
|
gather, |
|
|
is_bf16_available, |
|
|
is_datasets_available, |
|
|
is_ipex_available, |
|
|
is_mlu_available, |
|
|
is_musa_available, |
|
|
is_npu_available, |
|
|
is_pytest_available, |
|
|
is_xpu_available, |
|
|
set_seed, |
|
|
synchronize_rng_states, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
if is_xpu_available(): |
|
|
from accelerate.test_utils import RegressionModel4XPU as RegressionModel |
|
|
else: |
|
|
from accelerate.test_utils import RegressionModel |
|
|
|
|
|
|
|
|
def generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler=False): |
|
|
"Creates a dataloader that can also use the `SeedableRandomSampler`" |
|
|
if use_seedable_sampler: |
|
|
|
|
|
|
|
|
sampler = SeedableRandomSampler( |
|
|
generator=generator, |
|
|
data_source=train_set, |
|
|
num_samples=len(train_set), |
|
|
) |
|
|
return DataLoader(train_set, batch_size=batch_size, sampler=sampler) |
|
|
else: |
|
|
return DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator) |
|
|
|
|
|
|
|
|
def print_main(state): |
|
|
print(f"Printing from the main process {state.process_index}") |
|
|
|
|
|
|
|
|
def print_local_main(state): |
|
|
print(f"Printing from the local main process {state.local_process_index}") |
|
|
|
|
|
|
|
|
def print_last(state): |
|
|
print(f"Printing from the last process {state.process_index}") |
|
|
|
|
|
|
|
|
def print_on(state, process_idx): |
|
|
print(f"Printing from process {process_idx}: {state.process_index}") |
|
|
|
|
|
|
|
|
def process_execution_check(): |
|
|
accelerator = Accelerator() |
|
|
num_processes = accelerator.num_processes |
|
|
|
|
|
path = Path("check_main_process_first.txt") |
|
|
with accelerator.main_process_first(): |
|
|
if accelerator.is_main_process: |
|
|
time.sleep(0.1) |
|
|
with open(path, "a+") as f: |
|
|
f.write("Currently in the main process\n") |
|
|
else: |
|
|
with open(path, "a+") as f: |
|
|
f.write("Now on another process\n") |
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if accelerator.is_main_process: |
|
|
with open(path) as f: |
|
|
text = "".join(f.readlines()) |
|
|
try: |
|
|
assert text.startswith("Currently in the main process\n"), "Main process was not first" |
|
|
if num_processes > 1: |
|
|
assert text.endswith("Now on another process\n"), "Main process was not first" |
|
|
assert ( |
|
|
text.count("Now on another process\n") == accelerator.num_processes - 1 |
|
|
), f"Only wrote to file {text.count('Now on another process') + 1} times, not {accelerator.num_processes}" |
|
|
except AssertionError: |
|
|
path.unlink() |
|
|
raise |
|
|
|
|
|
if accelerator.is_main_process and path.exists(): |
|
|
path.unlink() |
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
f = io.StringIO() |
|
|
with contextlib.redirect_stdout(f): |
|
|
accelerator.on_main_process(print_main)(accelerator.state) |
|
|
result = f.getvalue().rstrip() |
|
|
if accelerator.is_main_process: |
|
|
assert result == "Printing from the main process 0", f"{result} != Printing from the main process 0" |
|
|
else: |
|
|
assert f.getvalue().rstrip() == "", f'{result} != ""' |
|
|
f.truncate(0) |
|
|
f.seek(0) |
|
|
|
|
|
with contextlib.redirect_stdout(f): |
|
|
accelerator.on_local_main_process(print_local_main)(accelerator.state) |
|
|
if accelerator.is_local_main_process: |
|
|
assert f.getvalue().rstrip() == "Printing from the local main process 0" |
|
|
else: |
|
|
assert f.getvalue().rstrip() == "" |
|
|
f.truncate(0) |
|
|
f.seek(0) |
|
|
|
|
|
with contextlib.redirect_stdout(f): |
|
|
accelerator.on_last_process(print_last)(accelerator.state) |
|
|
if accelerator.is_last_process: |
|
|
assert f.getvalue().rstrip() == f"Printing from the last process {accelerator.state.num_processes - 1}" |
|
|
else: |
|
|
assert f.getvalue().rstrip() == "" |
|
|
f.truncate(0) |
|
|
f.seek(0) |
|
|
|
|
|
for process_idx in range(num_processes): |
|
|
with contextlib.redirect_stdout(f): |
|
|
accelerator.on_process(print_on, process_index=process_idx)(accelerator.state, process_idx) |
|
|
if accelerator.process_index == process_idx: |
|
|
assert f.getvalue().rstrip() == f"Printing from process {process_idx}: {accelerator.process_index}" |
|
|
else: |
|
|
assert f.getvalue().rstrip() == "" |
|
|
f.truncate(0) |
|
|
f.seek(0) |
|
|
|
|
|
|
|
|
def init_state_check(): |
|
|
|
|
|
state = AcceleratorState() |
|
|
if state.local_process_index == 0: |
|
|
print("Testing, testing. 1, 2, 3.") |
|
|
print(state) |
|
|
|
|
|
|
|
|
def rng_sync_check(): |
|
|
state = AcceleratorState() |
|
|
synchronize_rng_states(["torch"]) |
|
|
assert are_the_same_tensors(torch.get_rng_state()), "RNG states improperly synchronized on CPU." |
|
|
if state.distributed_type == DistributedType.MULTI_GPU: |
|
|
synchronize_rng_states(["cuda"]) |
|
|
assert are_the_same_tensors(torch.cuda.get_rng_state()), "RNG states improperly synchronized on GPU." |
|
|
elif state.distributed_type == DistributedType.MULTI_XPU: |
|
|
synchronize_rng_states(["xpu"]) |
|
|
assert are_the_same_tensors(torch.xpu.get_rng_state()), "RNG states improperly synchronized on XPU." |
|
|
generator = torch.Generator() |
|
|
synchronize_rng_states(["generator"], generator=generator) |
|
|
assert are_the_same_tensors(generator.get_state()), "RNG states improperly synchronized in generator." |
|
|
|
|
|
if state.local_process_index == 0: |
|
|
print("All rng are properly synched.") |
|
|
|
|
|
|
|
|
def dl_preparation_check(): |
|
|
state = AcceleratorState() |
|
|
length = 32 * state.num_processes |
|
|
|
|
|
dl = DataLoader(range(length), batch_size=8) |
|
|
dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True) |
|
|
result = [] |
|
|
for batch in dl: |
|
|
result.append(gather(batch)) |
|
|
result = torch.cat(result) |
|
|
|
|
|
print(state.process_index, result, type(dl)) |
|
|
assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." |
|
|
|
|
|
dl = DataLoader(range(length), batch_size=8) |
|
|
dl = prepare_data_loader( |
|
|
dl, |
|
|
state.device, |
|
|
state.num_processes, |
|
|
state.process_index, |
|
|
put_on_device=True, |
|
|
split_batches=True, |
|
|
) |
|
|
result = [] |
|
|
for batch in dl: |
|
|
result.append(gather(batch)) |
|
|
result = torch.cat(result) |
|
|
assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." |
|
|
|
|
|
if state.process_index == 0: |
|
|
print("Non-shuffled dataloader passing.") |
|
|
|
|
|
dl = DataLoader(range(length), batch_size=8, shuffle=True) |
|
|
dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True) |
|
|
result = [] |
|
|
for batch in dl: |
|
|
result.append(gather(batch)) |
|
|
result = torch.cat(result).tolist() |
|
|
result.sort() |
|
|
assert result == list(range(length)), "Wrong shuffled dataloader result." |
|
|
|
|
|
dl = DataLoader(range(length), batch_size=8, shuffle=True) |
|
|
dl = prepare_data_loader( |
|
|
dl, |
|
|
state.device, |
|
|
state.num_processes, |
|
|
state.process_index, |
|
|
put_on_device=True, |
|
|
split_batches=True, |
|
|
) |
|
|
result = [] |
|
|
for batch in dl: |
|
|
result.append(gather(batch)) |
|
|
result = torch.cat(result).tolist() |
|
|
result.sort() |
|
|
assert result == list(range(length)), "Wrong shuffled dataloader result." |
|
|
|
|
|
if state.local_process_index == 0: |
|
|
print("Shuffled dataloader passing.") |
|
|
|
|
|
|
|
|
def central_dl_preparation_check(): |
|
|
state = AcceleratorState() |
|
|
length = 32 * state.num_processes |
|
|
|
|
|
dl = DataLoader(range(length), batch_size=8) |
|
|
dl = prepare_data_loader( |
|
|
dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True |
|
|
) |
|
|
result = [] |
|
|
for batch in dl: |
|
|
result.append(gather(batch)) |
|
|
result = torch.cat(result) |
|
|
assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." |
|
|
|
|
|
dl = DataLoader(range(length), batch_size=8) |
|
|
dl = prepare_data_loader( |
|
|
dl, |
|
|
state.device, |
|
|
state.num_processes, |
|
|
state.process_index, |
|
|
put_on_device=True, |
|
|
split_batches=True, |
|
|
dispatch_batches=True, |
|
|
) |
|
|
result = [] |
|
|
for batch in dl: |
|
|
result.append(gather(batch)) |
|
|
result = torch.cat(result) |
|
|
assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." |
|
|
|
|
|
if state.process_index == 0: |
|
|
print("Non-shuffled central dataloader passing.") |
|
|
|
|
|
dl = DataLoader(range(length), batch_size=8, shuffle=True) |
|
|
dl = prepare_data_loader( |
|
|
dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True |
|
|
) |
|
|
result = [] |
|
|
for batch in dl: |
|
|
result.append(gather(batch)) |
|
|
result = torch.cat(result).tolist() |
|
|
result.sort() |
|
|
assert result == list(range(length)), "Wrong shuffled dataloader result." |
|
|
|
|
|
dl = DataLoader(range(length), batch_size=8, shuffle=True) |
|
|
dl = prepare_data_loader( |
|
|
dl, |
|
|
state.device, |
|
|
state.num_processes, |
|
|
state.process_index, |
|
|
put_on_device=True, |
|
|
split_batches=True, |
|
|
dispatch_batches=True, |
|
|
) |
|
|
result = [] |
|
|
for batch in dl: |
|
|
result.append(gather(batch)) |
|
|
result = torch.cat(result).tolist() |
|
|
result.sort() |
|
|
assert result == list(range(length)), "Wrong shuffled dataloader result." |
|
|
|
|
|
if state.local_process_index == 0: |
|
|
print("Shuffled central dataloader passing.") |
|
|
|
|
|
|
|
|
def custom_sampler_check(): |
|
|
state = AcceleratorState() |
|
|
|
|
|
class CustomDataset(Dataset): |
|
|
def __init__(self, data): |
|
|
self.data = data |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.data) |
|
|
|
|
|
def __getitem__(self, index): |
|
|
return self.data[index] |
|
|
|
|
|
class CustomBatchSampler: |
|
|
def __init__(self, dataset_length: int, batch_size: int, shuffle: bool = True): |
|
|
self.batch_size = batch_size |
|
|
self.data_index = np.arange(dataset_length) |
|
|
self.shuffle = shuffle |
|
|
|
|
|
def __iter__(self): |
|
|
num_batches = len(self) |
|
|
if self.shuffle: |
|
|
index = np.random.permutation(self.data_index) |
|
|
else: |
|
|
index = self.data_index |
|
|
output = np.array_split(index, num_batches) |
|
|
yield from output |
|
|
|
|
|
def __len__(self): |
|
|
return math.ceil(len(self.data_index) / self.batch_size) |
|
|
|
|
|
dataset = CustomDataset(range(32 * state.num_processes)) |
|
|
sampler = CustomBatchSampler(len(dataset), batch_size=8) |
|
|
dl = DataLoader(dataset, batch_sampler=sampler) |
|
|
dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index) |
|
|
|
|
|
if hasattr(dl.batch_sampler, "batch_sampler"): |
|
|
assert isinstance( |
|
|
dl.batch_sampler.batch_sampler, CustomBatchSampler |
|
|
), "Custom sampler was changed after calling `prepare_data_loader`" |
|
|
else: |
|
|
assert isinstance( |
|
|
dl.batch_sampler, CustomBatchSampler |
|
|
), "Custom sampler was changed after calling `prepare_data_loader`" |
|
|
|
|
|
|
|
|
def check_seedable_sampler(): |
|
|
|
|
|
set_seed(42) |
|
|
train_set = RegressionDataset(length=10, seed=42) |
|
|
train_dl = DataLoader(train_set, batch_size=2, shuffle=True) |
|
|
|
|
|
config = DataLoaderConfiguration(use_seedable_sampler=True) |
|
|
accelerator = Accelerator(dataloader_config=config) |
|
|
train_dl = accelerator.prepare(train_dl) |
|
|
original_items = [] |
|
|
for _ in range(3): |
|
|
for batch in train_dl: |
|
|
original_items.append(batch["x"]) |
|
|
original_items = torch.cat(original_items) |
|
|
|
|
|
|
|
|
set_seed(42) |
|
|
train_dl.set_epoch(0) |
|
|
new_items = [] |
|
|
for _ in range(3): |
|
|
for batch in train_dl: |
|
|
new_items.append(batch["x"]) |
|
|
new_items = torch.cat(new_items) |
|
|
assert torch.allclose(original_items, new_items), "Did not obtain the same items with the same seed and epoch." |
|
|
|
|
|
|
|
|
def check_seedable_sampler_in_batch_sampler_shard(): |
|
|
set_seed(42) |
|
|
|
|
|
config = DataLoaderConfiguration(use_seedable_sampler=True) |
|
|
accelerator = Accelerator(dataloader_config=config) |
|
|
assert accelerator.num_processes > 1, "This test requires more than one process." |
|
|
|
|
|
dataloader = DataLoader(list(range(10)), batch_size=1, shuffle=True) |
|
|
prepared_data_loader = prepare_data_loader( |
|
|
dataloader=dataloader, |
|
|
use_seedable_sampler=True, |
|
|
) |
|
|
|
|
|
target_sampler = prepared_data_loader.batch_sampler.batch_sampler.sampler |
|
|
assert isinstance( |
|
|
target_sampler, SeedableRandomSampler |
|
|
), "Sampler in BatchSamplerShard is not SeedableRandomSampler." |
|
|
|
|
|
|
|
|
def check_seedable_sampler_with_data_seed(): |
|
|
|
|
|
set_seed(42) |
|
|
data_seed = 42 |
|
|
train_set = RegressionDataset(length=10, seed=42) |
|
|
train_dl = DataLoader(train_set, batch_size=2, shuffle=True) |
|
|
|
|
|
config = DataLoaderConfiguration(use_seedable_sampler=True, data_seed=data_seed) |
|
|
accelerator = Accelerator(dataloader_config=config) |
|
|
prepared_dl = accelerator.prepare(train_dl) |
|
|
original_items = [] |
|
|
for _ in range(3): |
|
|
for batch in prepared_dl: |
|
|
original_items.append(batch["x"]) |
|
|
original_items = torch.cat(original_items) |
|
|
|
|
|
|
|
|
config.data_seed = 43 |
|
|
accelerator = Accelerator(dataloader_config=config) |
|
|
prepared_dl = accelerator.prepare(train_dl) |
|
|
new_items = [] |
|
|
for _ in range(3): |
|
|
for batch in prepared_dl: |
|
|
new_items.append(batch["x"]) |
|
|
new_items = torch.cat(new_items) |
|
|
assert not torch.allclose(original_items, new_items), "Obtained the same items with different data seed." |
|
|
|
|
|
|
|
|
def mock_training(length, batch_size, generator, use_seedable_sampler=False): |
|
|
set_seed(42) |
|
|
generator.manual_seed(42) |
|
|
train_set = RegressionDataset(length=length, seed=42) |
|
|
|
|
|
train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) |
|
|
model = RegressionModel() |
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.1) |
|
|
for epoch in range(3): |
|
|
for batch in train_dl: |
|
|
model.zero_grad() |
|
|
output = model(batch["x"]) |
|
|
loss = torch.nn.functional.mse_loss(output, batch["y"]) |
|
|
loss.backward() |
|
|
optimizer.step() |
|
|
return train_set, model |
|
|
|
|
|
|
|
|
def training_check(use_seedable_sampler=False): |
|
|
state = AcceleratorState() |
|
|
generator = torch.Generator() |
|
|
batch_size = 8 |
|
|
length = batch_size * 4 * state.num_processes |
|
|
|
|
|
train_set, old_model = mock_training(length, batch_size * state.num_processes, generator, use_seedable_sampler) |
|
|
assert are_the_same_tensors(old_model.a), "Did not obtain the same model on both processes." |
|
|
assert are_the_same_tensors(old_model.b), "Did not obtain the same model on both processes." |
|
|
|
|
|
accelerator = Accelerator() |
|
|
train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) |
|
|
model = RegressionModel() |
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.1) |
|
|
|
|
|
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) |
|
|
set_seed(42) |
|
|
generator.manual_seed(42) |
|
|
for _ in range(3): |
|
|
for batch in train_dl: |
|
|
model.zero_grad() |
|
|
output = model(batch["x"]) |
|
|
loss = torch.nn.functional.mse_loss(output, batch["y"]) |
|
|
accelerator.backward(loss) |
|
|
optimizer.step() |
|
|
|
|
|
model = accelerator.unwrap_model(model).cpu() |
|
|
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." |
|
|
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." |
|
|
|
|
|
accelerator.print("Training yielded the same results on one CPU or distributed setup with no batch split.") |
|
|
|
|
|
dataloader_config = DataLoaderConfiguration(split_batches=True, use_seedable_sampler=use_seedable_sampler) |
|
|
accelerator = Accelerator(dataloader_config=dataloader_config) |
|
|
train_dl = generate_baseline_dataloader( |
|
|
train_set, generator, batch_size * state.num_processes, use_seedable_sampler |
|
|
) |
|
|
model = RegressionModel() |
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.1) |
|
|
|
|
|
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) |
|
|
set_seed(42) |
|
|
generator.manual_seed(42) |
|
|
for _ in range(3): |
|
|
for batch in train_dl: |
|
|
model.zero_grad() |
|
|
output = model(batch["x"]) |
|
|
loss = torch.nn.functional.mse_loss(output, batch["y"]) |
|
|
accelerator.backward(loss) |
|
|
optimizer.step() |
|
|
|
|
|
model = accelerator.unwrap_model(model).cpu() |
|
|
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." |
|
|
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." |
|
|
|
|
|
accelerator.print("Training yielded the same results on one CPU or distributes setup with batch split.") |
|
|
|
|
|
if torch.cuda.is_available() or is_npu_available() or is_mlu_available() or is_musa_available(): |
|
|
|
|
|
print("FP16 training check.") |
|
|
AcceleratorState._reset_state() |
|
|
dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) |
|
|
accelerator = Accelerator(mixed_precision="fp16", dataloader_config=dataloader_config) |
|
|
train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) |
|
|
model = RegressionModel() |
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.1) |
|
|
|
|
|
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) |
|
|
set_seed(42) |
|
|
generator.manual_seed(42) |
|
|
for _ in range(3): |
|
|
for batch in train_dl: |
|
|
model.zero_grad() |
|
|
output = model(batch["x"]) |
|
|
loss = torch.nn.functional.mse_loss(output, batch["y"]) |
|
|
accelerator.backward(loss) |
|
|
optimizer.step() |
|
|
|
|
|
model = accelerator.unwrap_model(model).cpu() |
|
|
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." |
|
|
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." |
|
|
|
|
|
if torch.cuda.is_available(): |
|
|
|
|
|
print("Keep fp32 wrapper check.") |
|
|
AcceleratorState._reset_state() |
|
|
accelerator = Accelerator(mixed_precision="fp16") |
|
|
|
|
|
model = torch.nn.Linear(2, 4) |
|
|
model = accelerator.prepare(model) |
|
|
model_with_fp32_wrapper = accelerator.unwrap_model(model, keep_fp32_wrapper=True) |
|
|
|
|
|
|
|
|
|
|
|
input_tensor = torch.Tensor([1, 2]).to(dtype=torch.float16, device=accelerator.device) |
|
|
output = model_with_fp32_wrapper(input_tensor) |
|
|
|
|
|
|
|
|
if is_bf16_available(): |
|
|
|
|
|
print("BF16 training check.") |
|
|
AcceleratorState._reset_state() |
|
|
dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) |
|
|
accelerator = Accelerator(mixed_precision="bf16", dataloader_config=dataloader_config) |
|
|
train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) |
|
|
model = RegressionModel() |
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.1) |
|
|
|
|
|
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) |
|
|
set_seed(42) |
|
|
generator.manual_seed(42) |
|
|
for _ in range(3): |
|
|
for batch in train_dl: |
|
|
model.zero_grad() |
|
|
output = model(batch["x"]) |
|
|
loss = torch.nn.functional.mse_loss(output, batch["y"]) |
|
|
accelerator.backward(loss) |
|
|
optimizer.step() |
|
|
|
|
|
model = accelerator.unwrap_model(model).cpu() |
|
|
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." |
|
|
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." |
|
|
|
|
|
|
|
|
if is_ipex_available(): |
|
|
print("ipex BF16 training check.") |
|
|
AcceleratorState._reset_state() |
|
|
dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) |
|
|
accelerator = Accelerator(mixed_precision="bf16", cpu=True, dataloader_config=dataloader_config) |
|
|
train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) |
|
|
model = RegressionModel() |
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.1) |
|
|
|
|
|
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) |
|
|
set_seed(42) |
|
|
generator.manual_seed(42) |
|
|
for _ in range(3): |
|
|
for batch in train_dl: |
|
|
model.zero_grad() |
|
|
output = model(batch["x"]) |
|
|
loss = torch.nn.functional.mse_loss(output, batch["y"]) |
|
|
accelerator.backward(loss) |
|
|
optimizer.step() |
|
|
|
|
|
model = accelerator.unwrap_model(model).cpu() |
|
|
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." |
|
|
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." |
|
|
|
|
|
|
|
|
if is_xpu_available(): |
|
|
print("xpu BF16 training check.") |
|
|
AcceleratorState._reset_state() |
|
|
dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) |
|
|
accelerator = Accelerator(mixed_precision="bf16", cpu=False, dataloader_config=dataloader_config) |
|
|
train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) |
|
|
model = RegressionModel() |
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.1) |
|
|
|
|
|
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) |
|
|
set_seed(42) |
|
|
generator.manual_seed(42) |
|
|
for _ in range(3): |
|
|
for batch in train_dl: |
|
|
model.zero_grad() |
|
|
output = model(batch["x"]) |
|
|
loss = torch.nn.functional.mse_loss(output, batch["y"]) |
|
|
accelerator.backward(loss) |
|
|
optimizer.step() |
|
|
|
|
|
model = accelerator.unwrap_model(model).cpu() |
|
|
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on XPU or distributed training." |
|
|
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on XPU or distributed training." |
|
|
|
|
|
|
|
|
def test_split_between_processes_dataset(datasets_Dataset): |
|
|
state = AcceleratorState() |
|
|
data = datasets_Dataset.from_list([dict(k=v) for v in range(2 * state.num_processes)]) |
|
|
with state.split_between_processes(data, apply_padding=False) as results: |
|
|
assert ( |
|
|
len(results) == 2 |
|
|
), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}" |
|
|
|
|
|
data = datasets_Dataset.from_list([dict(k=v) for v in range(2 * state.num_processes - 1)]) |
|
|
with state.split_between_processes(data, apply_padding=False) as results: |
|
|
if state.is_last_process: |
|
|
assert ( |
|
|
len(results) == 1 |
|
|
), f"Last process did not receive a single item. Process index: {state.process_index}; Length: {len(results)}" |
|
|
else: |
|
|
assert ( |
|
|
len(results) == 2 |
|
|
), f"One of the intermediate processes did not receive two items. Process index: {state.process_index}; Length: {len(results)}" |
|
|
|
|
|
data = datasets_Dataset.from_list([dict(k=v) for v in range(2 * state.num_processes - 1)]) |
|
|
with state.split_between_processes(data, apply_padding=True) as results: |
|
|
if state.num_processes == 1: |
|
|
assert ( |
|
|
len(results) == 1 |
|
|
), f"Single process did not receive a single item. Process index: {state.process_index}; Length: {len(results)}" |
|
|
else: |
|
|
assert ( |
|
|
len(results) == 2 |
|
|
), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}" |
|
|
|
|
|
state.wait_for_everyone() |
|
|
|
|
|
|
|
|
def test_split_between_processes_list(): |
|
|
state = AcceleratorState() |
|
|
data = list(range(0, 2 * state.num_processes)) |
|
|
with state.split_between_processes(data) as results: |
|
|
assert ( |
|
|
len(results) == 2 |
|
|
), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}" |
|
|
|
|
|
data = list(range(0, (3 * state.num_processes) - 1)) |
|
|
with state.split_between_processes(data, apply_padding=True) as results: |
|
|
if state.is_last_process: |
|
|
|
|
|
num_samples_per_device = math.ceil(len(data) / state.num_processes) |
|
|
assert ( |
|
|
len(results) == num_samples_per_device |
|
|
), f"Last process did not get the extra item(s). Process index: {state.process_index}; Length: {len(results)}" |
|
|
state.wait_for_everyone() |
|
|
|
|
|
|
|
|
def test_split_between_processes_nested_dict(): |
|
|
state = AcceleratorState() |
|
|
a = [1, 2, 3, 4, 5, 6, 7, 8] |
|
|
b = ["a", "b", "c", "d", "e", "f", "g", "h"] |
|
|
c = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]) |
|
|
if state.num_processes in (1, 2, 4): |
|
|
data = {"a": a, "b": b, "c": c} |
|
|
data_copy = deepcopy(data) |
|
|
with state.split_between_processes(data) as results: |
|
|
if state.process_index == 0: |
|
|
assert results["a"] == data_copy["a"][: 8 // state.num_processes] |
|
|
elif state.num_processes == 2: |
|
|
assert results["a"] == data_copy["a"][4:] |
|
|
elif state.process_index == 3: |
|
|
|
|
|
assert results["a"] == data_copy["a"][-2:], f'Expected: {data_copy["a"][-2]}, Actual: {results["a"]}' |
|
|
if state.process_index == 0: |
|
|
assert results["b"] == data_copy["b"][: 8 // state.num_processes] |
|
|
elif state.num_processes == 2: |
|
|
assert results["b"] == data_copy["b"][4:] |
|
|
elif state.process_index == 3: |
|
|
assert results["b"] == data_copy["b"][-2:] |
|
|
if state.process_index == 0: |
|
|
assert torch.allclose( |
|
|
results["c"], data_copy["c"][: 8 // state.num_processes] |
|
|
), f"Did not obtain expected values on process 0, expected `{data['c'][:8 // state.num_processes]}`, received: {results['c']}" |
|
|
elif state.num_processes == 2: |
|
|
assert torch.allclose( |
|
|
results["c"], data_copy["c"][4:] |
|
|
), f"Did not obtain expected values on process 2, expected `{data['c'][4:]}`, received: {results['c']}" |
|
|
elif state.process_index == 3: |
|
|
assert torch.allclose( |
|
|
results["c"], data_copy["c"][-2:] |
|
|
), f"Did not obtain expected values on process 4, expected `{data['c'][-2:]}`, received: {results['c']}" |
|
|
|
|
|
state.wait_for_everyone() |
|
|
|
|
|
|
|
|
def test_split_between_processes_tensor(): |
|
|
state = AcceleratorState() |
|
|
if state.num_processes > 1: |
|
|
data = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7]]).to(state.device) |
|
|
with state.split_between_processes(data) as results: |
|
|
if state.process_index == 0: |
|
|
assert torch.allclose(results, torch.tensor([0, 1, 2, 3]).to(state.device)) |
|
|
else: |
|
|
assert torch.allclose(results, torch.tensor([4, 5, 6, 7]).to(state.device)) |
|
|
state.wait_for_everyone() |
|
|
|
|
|
|
|
|
def test_split_between_processes_evenly(): |
|
|
state = AcceleratorState() |
|
|
if state.num_processes in (1, 2, 4, 8): |
|
|
data = list(range(17)) |
|
|
num_samples_per_process = len(data) // state.num_processes |
|
|
num_extras = len(data) % state.num_processes |
|
|
with state.split_between_processes(data) as results: |
|
|
if state.process_index < num_extras: |
|
|
assert ( |
|
|
len(results) == num_samples_per_process + 1 |
|
|
), f"Each Process should have even elements. Expected: {num_samples_per_process + 1}, Actual: {len(results)}" |
|
|
else: |
|
|
assert ( |
|
|
len(results) == num_samples_per_process |
|
|
), f"Each Process should have even elements. Expected: {num_samples_per_process}, Actual: {len(results)}" |
|
|
state.wait_for_everyone() |
|
|
|
|
|
|
|
|
def test_trigger(): |
|
|
accelerator = Accelerator() |
|
|
|
|
|
assert accelerator.check_trigger() is False |
|
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
|
accelerator.set_trigger() |
|
|
|
|
|
|
|
|
|
|
|
assert accelerator.check_trigger() is True |
|
|
|
|
|
|
|
|
assert accelerator.check_trigger() is False |
|
|
|
|
|
|
|
|
def test_reinstantiated_state(): |
|
|
import pytest |
|
|
|
|
|
AcceleratorState._reset_state() |
|
|
simple_model = torch.nn.Linear(1, 1) |
|
|
|
|
|
accelerator = Accelerator() |
|
|
|
|
|
AcceleratorState._reset_state() |
|
|
|
|
|
with pytest.raises(AttributeError) as cm: |
|
|
accelerator.prepare(simple_model) |
|
|
assert "`AcceleratorState` object has no attribute" in str(cm.value.args[0]) |
|
|
assert "This happens if `AcceleratorState._reset_state()`" in str(cm.value.args[0]) |
|
|
|
|
|
|
|
|
def main(): |
|
|
accelerator = Accelerator() |
|
|
state = accelerator.state |
|
|
if state.local_process_index == 0: |
|
|
print("**Initialization**") |
|
|
init_state_check() |
|
|
state.wait_for_everyone() |
|
|
|
|
|
if state.distributed_type == DistributedType.MULTI_GPU: |
|
|
num_processes_per_node = torch.cuda.device_count() |
|
|
else: |
|
|
num_processes_per_node = state.num_processes |
|
|
|
|
|
|
|
|
if num_processes_per_node == state.num_processes: |
|
|
if state.process_index == 0: |
|
|
print("\n**Test process execution**") |
|
|
process_execution_check() |
|
|
|
|
|
if state.process_index == 0: |
|
|
print("\n**Test split between processes as a list**") |
|
|
test_split_between_processes_list() |
|
|
|
|
|
if state.process_index == 0: |
|
|
print("\n**Test split between processes as a dict**") |
|
|
test_split_between_processes_nested_dict() |
|
|
|
|
|
if state.process_index == 0: |
|
|
print("\n**Test split between processes as a tensor**") |
|
|
test_split_between_processes_tensor() |
|
|
|
|
|
if state.process_index == 0: |
|
|
print("\n**Test split between processes evenly**") |
|
|
test_split_between_processes_evenly() |
|
|
|
|
|
if state.process_index == 0: |
|
|
print("\n**Test split between processes as a datasets.Dataset**") |
|
|
if is_datasets_available(): |
|
|
from datasets import Dataset as datasets_Dataset |
|
|
|
|
|
test_split_between_processes_dataset(datasets_Dataset) |
|
|
else: |
|
|
print("Skipped because Hugging Face datasets is not available") |
|
|
|
|
|
if state.local_process_index == 0: |
|
|
print("\n**Test random number generator synchronization**") |
|
|
rng_sync_check() |
|
|
|
|
|
if state.local_process_index == 0: |
|
|
print("\n**DataLoader integration test**") |
|
|
dl_preparation_check() |
|
|
if state.distributed_type != DistributedType.XLA: |
|
|
central_dl_preparation_check() |
|
|
custom_sampler_check() |
|
|
check_seedable_sampler() |
|
|
check_seedable_sampler_with_data_seed() |
|
|
|
|
|
if state.num_processes > 1: |
|
|
check_seedable_sampler_in_batch_sampler_shard() |
|
|
|
|
|
|
|
|
if state.distributed_type == DistributedType.DEEPSPEED: |
|
|
return |
|
|
|
|
|
if state.local_process_index == 0: |
|
|
print("\n**Training integration test**") |
|
|
training_check(use_seedable_sampler=False) |
|
|
training_check(use_seedable_sampler=True) |
|
|
|
|
|
if state.local_process_index == 0: |
|
|
print("\n**Breakpoint trigger test**") |
|
|
test_trigger() |
|
|
|
|
|
if is_pytest_available(): |
|
|
if state.local_process_index == 0: |
|
|
print("\n**Test reinstantiated state**") |
|
|
test_reinstantiated_state() |
|
|
|
|
|
state.destroy_process_group() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|