DomArruda commited on
Commit
959fff2
1 Parent(s): 502ef7f
LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3de5614b72239bc6bddb4a5308b2fcf99a8947943e6248625c117c2c7e6c4adb
3
+ size 146747
LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79825b70c160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79825b70c1f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79825b70c280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79825b70c310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79825b70c3a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79825b70c430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79825b70c4c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79825b70c550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79825b70c5e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79825b70c670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79825b70c700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79825b70c790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79825b8abb40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 436032,
25
+ "_total_timesteps": 1500000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1694865108010577813,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACIRTuFI9m5TcNhO/O4rLWrLKu6Vl2EugAAgD8AAIA/ANXIPApHALnzqwu8rTD8NcDD4zkdVmm1AACAPwAAgD/NFJS8KXgLulx4zDvWFO03IWGFukpxWDYAAIA/AACAP83fKj1Ix4+6x1+huiXdS7aTUSC6oLi3NQAAgD8AAIA/zVjKvCmYKrpOwQO5lTpntET1JTrFuBk4AACAPwAAgD9mnZG8XGMSusVU07tCkcu1DnjFOoCROTUAAIA/AACAP80wwDzDTTC6zaQxvGF/xzWwAQK71J84tQAAgD8AAIA/s6qyvVKwxrlIVM47DQuiOCz5A7otCra5AACAPwAAgD/AEDi+nVCOP8WZUL204bO+CkRUvu4suD0AAAAAAAAAAJoBWzsp0HO6iZ7COiKSLTV1hZK623ncuQAAgD8AAIA/APLLvCbfoz47H/+8YwJOvvicNL3+Jqm8AAAAAAAAAABmdis9FLqJutsdmrzkUH+1GnIsOzBI3zQAAIA/AACAP+aGkj0UDLC6npNnvJl/gzYf+CK6fbvqtQAAgD8AAIA/2l2gPXvahrqVO0G8Oarfte/a1bmSDlE1AACAPwAAgD+atBu9H43WuXcKubuAxDc4UP9fOHPz9rUAAIA/AACAPxq/Qz3DcXi6IooFu750nLYLPks48ZoZOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.7160106666666667,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGar0nogV46MAWyUTegDjAF0lEdAkCtlUZNwi3V9lChoBkdAY1jQHAymAWgHTegDaAhHQJArmJ3xFy91fZQoaAZHQGIWPbXYlIFoB03oA2gIR0CQLKxmCiAUdX2UKGgGR0BjVShBZ6ldaAdN6ANoCEdAkDDZIH1OCXV9lChoBkdAZc17Gecx02gHTegDaAhHQJAxZsi0OVh1fZQoaAZHQGEo6UzKs+5oB03oA2gIR0CQMt4xk/bCdX2UKGgGR0BjlgxQBPsSaAdN6ANoCEdAkDhvIsAeaXV9lChoBkdAXjs7dSEUTWgHTegDaAhHQJBBr/lyR0V1fZQoaAZHQGG4ft6X0GxoB03oA2gIR0CQROlr/KhddX2UKGgGR0BgOUvIwM6SaAdN6ANoCEdAkEkI9kjHGXV9lChoBkdAZEnGZuyeI2gHTegDaAhHQJBPg2Hck+p1fZQoaAZHQGSPSWzF+/hoB03oA2gIR0CQY33L3bmEdX2UKGgGR0BjBhxeb/fgaAdN6ANoCEdAkGWRYaHbh3V9lChoBkdAZVL9a2WpqGgHTegDaAhHQJBllIOH3111fZQoaAZHQGHGDyFwkxBoB03oA2gIR0CQao371qWUdX2UKGgGR0BjT9Brvb48aAdN6ANoCEdAkHll2mpEQXV9lChoBkdAY30afjCHh2gHTegDaAhHQJB75L+PzWh1fZQoaAZHQFvoglF+d9VoB03oA2gIR0CQfCA2Q4jsdX2UKGgGR0BkAQr8R+SbaAdN6ANoCEdAkH1RbfP5YnV9lChoBkdAYuT5j6N2kmgHTegDaAhHQJCB4nG82751fZQoaAZHQGTP9E1EVnFoB03oA2gIR0CQgpNNrTH9dX2UKGgGR0BlD1fkWAPNaAdN6ANoCEdAkIQVRtP56HV9lChoBkdAZpcB91EE1WgHTegDaAhHQJCJhT850bN1fZQoaAZHQGJTJCBwuNBoB03oA2gIR0CQieWS2Yv4dX2UKGgGR0BgiGwHJLdvaAdN6ANoCEdAkJVTqbBoEnV9lChoBkdAZcIpCKJl8WgHTegDaAhHQJCZXtAs0551fZQoaAZHQGOR5TZQHiZoB03oA2gIR0CQn79YfW+XdX2UKGgGR0Bf2cP4EfT1aAdN6ANoCEdAkLJhV+7UX3V9lChoBkdAYa7vOQhfSmgHTegDaAhHQJC0auRs/IN1fZQoaAZHQGI1cMuvlltoB03oA2gIR0CQtG4QjD8+dX2UKGgGR0BnYxLGrCFcaAdN6ANoCEdAkLk2TxG2C3V9lChoBkdAYl8jfvWpZWgHTegDaAhHQJDHElNUOut1fZQoaAZHQGXgPBJqZc9oB03oA2gIR0CQyWxXXAdodX2UKGgGR0Bio7riVB2PaAdN6ANoCEdAkMmkovzvqnV9lChoBkdAYmYizsyBTWgHTegDaAhHQJDKyNbTtsx1fZQoaAZHQGY87NSqEOBoB03oA2gIR0CQzrukDZDidX2UKGgGR0BlVtNN8E3baAdN6ANoCEdAkM9GPLgXM3V9lChoBkdAYcmVpsXSB2gHTegDaAhHQJDQq4tpVS51fZQoaAZHQGP8FLeyiVVoB03oA2gIR0CQ1fKXOW0JdX2UKGgGR0BhhuU+s5n2aAdN6ANoCEdAkNZR+nZTQ3V9lChoBkdAXtEC1Z1V52gHTegDaAhHQJDh02AG0NV1fZQoaAZHQGdFqeK8+RpoB03oA2gIR0CQ5evllsgudX2UKGgGR0Bg/XGuLaVVaAdN6ANoCEdAkOyoCEHt4XV9lChoBkdAZhY3LFGXomgHTegDaAhHQJEAOpm29ct1fZQoaAZHQGaNdf1HvttoB03oA2gIR0CRAg1JlJ6IdX2UKGgGR0BiPmhIvrWzaAdN6ANoCEdAkQIQD/2kBXV9lChoBkdAY7O4rjHXE2gHTegDaAhHQJEGfl+3H7x1fZQoaAZHQF1ziRnvlU9oB03oA2gIR0CRFB3+dbxFdX2UKGgGR0BlmJfUnXumaAdN6ANoCEdAkRZ6gVXV9XV9lChoBkdAYfRx9XtBwGgHTegDaAhHQJEWtWkrPMV1fZQoaAZHQGdSXz+WGAVoB03oA2gIR0CRF9DTjNpudX2UKGgGR0BkjJvYODraaAdN6ANoCEdAkRwKHj6vaHV9lChoBkdAYfzDbah6B2gHTegDaAhHQJEclUzbeuV1fZQoaAZHQGQLRO+IuXhoB03oA2gIR0CRHgqgRK6GdX2UKGgGR0Bk1ToOhCdCaAdN6ANoCEdAkSNsIzFdcHV9lChoBkdAYHmdkJ8fFWgHTegDaAhHQJEjyqBEroZ1fZQoaAZHQGR3Mfq5byJoB03oA2gIR0CRJysS00FbdX2UKGgGR0BlyyvxH5JsaAdN6ANoCEdAkTTpwGW2PXV9lChoBkdAYq1Ni6QNkWgHTegDaAhHQJE7sabWmP51fZQoaAZHQGOj6Jyhi9ZoB03oA2gIR0CRTyCuloDgdX2UKGgGR0BmbsjkdV/+aAdN6ANoCEdAkVEINiH6/XV9lChoBkdAY0joxHoX9GgHTegDaAhHQJFRC1SflIV1fZQoaAZHQGJrx0U47zVoB03oA2gIR0CRVRGOdXkpdX2UKGgGR0BjDPoTwlSkaAdN6ANoCEdAkWIYO+ZgHHV9lChoBkdAZvLiobXHzmgHTegDaAhHQJFkevovBad1fZQoaAZHQGQZ1y3kPtloB03oA2gIR0CRZLSBbwBpdX2UKGgGR0BgnNxGUfPpaAdN6ANoCEdAkWXQ0XP7enV9lChoBkdAYs4Hv+fh/GgHTegDaAhHQJFprQ/oq1B1fZQoaAZHQGOgP/JeVs1oB03oA2gIR0CRajKBd2PldX2UKGgGR0BnPYChew9raAdN6ANoCEdAkWuBWkrPMXV9lChoBkdAZVXZ13dKumgHTegDaAhHQJFwmvmozep1fZQoaAZHQGEIe49X9zhoB03oA2gIR0CRcPSpR4yHdX2UKGgGR0BkRlNYbKigaAdN6ANoCEdAkXQTVDrquHV9lChoBkdAZ4U9RrJr+GgHTegDaAhHQJGAy0VrRBx1fZQoaAZHQGS2euvECNloB03oA2gIR0CRhvTG5tm+dX2UKGgGR0BMJWxIJ7b+aAdL7WgIR0CRiCX6ZYxMdX2UKGgGR0BjQS9M9KVZaAdN6ANoCEdAkZhtmpVCHHV9lChoBkdAZfLz5oGpuWgHTegDaAhHQJGaNTisGPh1fZQoaAZHQGZ3wBPsRg9oB03oA2gIR0CRmjicoYvWdX2UKGgGR0Bh+00SAYpEaAdN6ANoCEdAkZ5X0kGA1HV9lChoBkdAUMUPWhAWzmgHS8FoCEdAkaZmhVU+93V9lChoBkdAYhbOcDr7f2gHTegDaAhHQJGqoV8CxNZ1fZQoaAZHQGLKCz9jwx5oB03oA2gIR0CRrL6gdwNtdX2UKGgGR0BjJSs+3YthaAdN6ANoCEdAkaz0KE3843V9lChoBkdAXqIUdq+JxmgHTegDaAhHQJGt88q4H5d1fZQoaAZHQGKU0oa1kUdoB03oA2gIR0CRsZFRYRukdX2UKGgGR0Bg5eig00m/aAdN6ANoCEdAkbITvZyuIXV9lChoBkdAZS9hwVCXyGgHTegDaAhHQJGzWKoAGSp1fZQoaAZHQGWUawUxmCloB03oA2gIR0CRuC5mh/RWdX2UKGgGR0BjJjiqABkqaAdN6ANoCEdAkbu+6mO2iXV9lChoBkdATo0RUWEbpGgHS8loCEdAkb7Cu6mO2nV9lChoBkdAUbdiH6/IsGgHS+RoCEdAkb70AT7EYXV9lChoBkdAZjuDe0ojOmgHTegDaAhHQJHJGU3XI2h1fZQoaAZHQGNo0JF9a2ZoB03oA2gIR0CRzyqI7/4qdX2UKGgGR0BnUtYU34sVaAdN6ANoCEdAkdBQcT8HfXV9lChoBkdAPIaIacZtN2gHS91oCEdAkdX/e1rqMXV9lChoBkdAZB4jWTX8O2gHTegDaAhHQJHgDHBDXvp1fZQoaAZHQGPSqYqoZQ5oB03oA2gIR0CR4dXD3ueCdX2UKGgGR0BgQrUqhDgJaAdN6ANoCEdAkeZ6Xv6TGHV9lChoBkdAZCTndO6/ZmgHTegDaAhHQJHvibb1yvN1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 232,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.995,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c82d149ca955c55d62e2b16c4ec524d9807897543948de5fb3007b0bbd1f76d
3
+ size 87929
LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb96bfe3a01573cf72a0e37b104d50ea6f22b4434657de6d4d035999e407efa3
3
+ size 43329
LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.13 +/- 20.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79825b70c160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79825b70c1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79825b70c280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79825b70c310>", "_build": "<function ActorCriticPolicy._build at 0x79825b70c3a0>", "forward": "<function ActorCriticPolicy.forward at 0x79825b70c430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79825b70c4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79825b70c550>", "_predict": "<function ActorCriticPolicy._predict at 0x79825b70c5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79825b70c670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79825b70c700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79825b70c790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79825b8abb40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 436032, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694865108010577813, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACIRTuFI9m5TcNhO/O4rLWrLKu6Vl2EugAAgD8AAIA/ANXIPApHALnzqwu8rTD8NcDD4zkdVmm1AACAPwAAgD/NFJS8KXgLulx4zDvWFO03IWGFukpxWDYAAIA/AACAP83fKj1Ix4+6x1+huiXdS7aTUSC6oLi3NQAAgD8AAIA/zVjKvCmYKrpOwQO5lTpntET1JTrFuBk4AACAPwAAgD9mnZG8XGMSusVU07tCkcu1DnjFOoCROTUAAIA/AACAP80wwDzDTTC6zaQxvGF/xzWwAQK71J84tQAAgD8AAIA/s6qyvVKwxrlIVM47DQuiOCz5A7otCra5AACAPwAAgD/AEDi+nVCOP8WZUL204bO+CkRUvu4suD0AAAAAAAAAAJoBWzsp0HO6iZ7COiKSLTV1hZK623ncuQAAgD8AAIA/APLLvCbfoz47H/+8YwJOvvicNL3+Jqm8AAAAAAAAAABmdis9FLqJutsdmrzkUH+1GnIsOzBI3zQAAIA/AACAP+aGkj0UDLC6npNnvJl/gzYf+CK6fbvqtQAAgD8AAIA/2l2gPXvahrqVO0G8Oarfte/a1bmSDlE1AACAPwAAgD+atBu9H43WuXcKubuAxDc4UP9fOHPz9rUAAIA/AACAPxq/Qz3DcXi6IooFu750nLYLPks48ZoZOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.7160106666666667, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGar0nogV46MAWyUTegDjAF0lEdAkCtlUZNwi3V9lChoBkdAY1jQHAymAWgHTegDaAhHQJArmJ3xFy91fZQoaAZHQGIWPbXYlIFoB03oA2gIR0CQLKxmCiAUdX2UKGgGR0BjVShBZ6ldaAdN6ANoCEdAkDDZIH1OCXV9lChoBkdAZc17Gecx02gHTegDaAhHQJAxZsi0OVh1fZQoaAZHQGEo6UzKs+5oB03oA2gIR0CQMt4xk/bCdX2UKGgGR0BjlgxQBPsSaAdN6ANoCEdAkDhvIsAeaXV9lChoBkdAXjs7dSEUTWgHTegDaAhHQJBBr/lyR0V1fZQoaAZHQGG4ft6X0GxoB03oA2gIR0CQROlr/KhddX2UKGgGR0BgOUvIwM6SaAdN6ANoCEdAkEkI9kjHGXV9lChoBkdAZEnGZuyeI2gHTegDaAhHQJBPg2Hck+p1fZQoaAZHQGSPSWzF+/hoB03oA2gIR0CQY33L3bmEdX2UKGgGR0BjBhxeb/fgaAdN6ANoCEdAkGWRYaHbh3V9lChoBkdAZVL9a2WpqGgHTegDaAhHQJBllIOH3111fZQoaAZHQGHGDyFwkxBoB03oA2gIR0CQao371qWUdX2UKGgGR0BjT9Brvb48aAdN6ANoCEdAkHll2mpEQXV9lChoBkdAY30afjCHh2gHTegDaAhHQJB75L+PzWh1fZQoaAZHQFvoglF+d9VoB03oA2gIR0CQfCA2Q4jsdX2UKGgGR0BkAQr8R+SbaAdN6ANoCEdAkH1RbfP5YnV9lChoBkdAYuT5j6N2kmgHTegDaAhHQJCB4nG82751fZQoaAZHQGTP9E1EVnFoB03oA2gIR0CQgpNNrTH9dX2UKGgGR0BlD1fkWAPNaAdN6ANoCEdAkIQVRtP56HV9lChoBkdAZpcB91EE1WgHTegDaAhHQJCJhT850bN1fZQoaAZHQGJTJCBwuNBoB03oA2gIR0CQieWS2Yv4dX2UKGgGR0BgiGwHJLdvaAdN6ANoCEdAkJVTqbBoEnV9lChoBkdAZcIpCKJl8WgHTegDaAhHQJCZXtAs0551fZQoaAZHQGOR5TZQHiZoB03oA2gIR0CQn79YfW+XdX2UKGgGR0Bf2cP4EfT1aAdN6ANoCEdAkLJhV+7UX3V9lChoBkdAYa7vOQhfSmgHTegDaAhHQJC0auRs/IN1fZQoaAZHQGI1cMuvlltoB03oA2gIR0CQtG4QjD8+dX2UKGgGR0BnYxLGrCFcaAdN6ANoCEdAkLk2TxG2C3V9lChoBkdAYl8jfvWpZWgHTegDaAhHQJDHElNUOut1fZQoaAZHQGXgPBJqZc9oB03oA2gIR0CQyWxXXAdodX2UKGgGR0Bio7riVB2PaAdN6ANoCEdAkMmkovzvqnV9lChoBkdAYmYizsyBTWgHTegDaAhHQJDKyNbTtsx1fZQoaAZHQGY87NSqEOBoB03oA2gIR0CQzrukDZDidX2UKGgGR0BlVtNN8E3baAdN6ANoCEdAkM9GPLgXM3V9lChoBkdAYcmVpsXSB2gHTegDaAhHQJDQq4tpVS51fZQoaAZHQGP8FLeyiVVoB03oA2gIR0CQ1fKXOW0JdX2UKGgGR0BhhuU+s5n2aAdN6ANoCEdAkNZR+nZTQ3V9lChoBkdAXtEC1Z1V52gHTegDaAhHQJDh02AG0NV1fZQoaAZHQGdFqeK8+RpoB03oA2gIR0CQ5evllsgudX2UKGgGR0Bg/XGuLaVVaAdN6ANoCEdAkOyoCEHt4XV9lChoBkdAZhY3LFGXomgHTegDaAhHQJEAOpm29ct1fZQoaAZHQGaNdf1HvttoB03oA2gIR0CRAg1JlJ6IdX2UKGgGR0BiPmhIvrWzaAdN6ANoCEdAkQIQD/2kBXV9lChoBkdAY7O4rjHXE2gHTegDaAhHQJEGfl+3H7x1fZQoaAZHQF1ziRnvlU9oB03oA2gIR0CRFB3+dbxFdX2UKGgGR0BlmJfUnXumaAdN6ANoCEdAkRZ6gVXV9XV9lChoBkdAYfRx9XtBwGgHTegDaAhHQJEWtWkrPMV1fZQoaAZHQGdSXz+WGAVoB03oA2gIR0CRF9DTjNpudX2UKGgGR0BkjJvYODraaAdN6ANoCEdAkRwKHj6vaHV9lChoBkdAYfzDbah6B2gHTegDaAhHQJEclUzbeuV1fZQoaAZHQGQLRO+IuXhoB03oA2gIR0CRHgqgRK6GdX2UKGgGR0Bk1ToOhCdCaAdN6ANoCEdAkSNsIzFdcHV9lChoBkdAYHmdkJ8fFWgHTegDaAhHQJEjyqBEroZ1fZQoaAZHQGR3Mfq5byJoB03oA2gIR0CRJysS00FbdX2UKGgGR0BlyyvxH5JsaAdN6ANoCEdAkTTpwGW2PXV9lChoBkdAYq1Ni6QNkWgHTegDaAhHQJE7sabWmP51fZQoaAZHQGOj6Jyhi9ZoB03oA2gIR0CRTyCuloDgdX2UKGgGR0BmbsjkdV/+aAdN6ANoCEdAkVEINiH6/XV9lChoBkdAY0joxHoX9GgHTegDaAhHQJFRC1SflIV1fZQoaAZHQGJrx0U47zVoB03oA2gIR0CRVRGOdXkpdX2UKGgGR0BjDPoTwlSkaAdN6ANoCEdAkWIYO+ZgHHV9lChoBkdAZvLiobXHzmgHTegDaAhHQJFkevovBad1fZQoaAZHQGQZ1y3kPtloB03oA2gIR0CRZLSBbwBpdX2UKGgGR0BgnNxGUfPpaAdN6ANoCEdAkWXQ0XP7enV9lChoBkdAYs4Hv+fh/GgHTegDaAhHQJFprQ/oq1B1fZQoaAZHQGOgP/JeVs1oB03oA2gIR0CRajKBd2PldX2UKGgGR0BnPYChew9raAdN6ANoCEdAkWuBWkrPMXV9lChoBkdAZVXZ13dKumgHTegDaAhHQJFwmvmozep1fZQoaAZHQGEIe49X9zhoB03oA2gIR0CRcPSpR4yHdX2UKGgGR0BkRlNYbKigaAdN6ANoCEdAkXQTVDrquHV9lChoBkdAZ4U9RrJr+GgHTegDaAhHQJGAy0VrRBx1fZQoaAZHQGS2euvECNloB03oA2gIR0CRhvTG5tm+dX2UKGgGR0BMJWxIJ7b+aAdL7WgIR0CRiCX6ZYxMdX2UKGgGR0BjQS9M9KVZaAdN6ANoCEdAkZhtmpVCHHV9lChoBkdAZfLz5oGpuWgHTegDaAhHQJGaNTisGPh1fZQoaAZHQGZ3wBPsRg9oB03oA2gIR0CRmjicoYvWdX2UKGgGR0Bh+00SAYpEaAdN6ANoCEdAkZ5X0kGA1HV9lChoBkdAUMUPWhAWzmgHS8FoCEdAkaZmhVU+93V9lChoBkdAYhbOcDr7f2gHTegDaAhHQJGqoV8CxNZ1fZQoaAZHQGLKCz9jwx5oB03oA2gIR0CRrL6gdwNtdX2UKGgGR0BjJSs+3YthaAdN6ANoCEdAkaz0KE3843V9lChoBkdAXqIUdq+JxmgHTegDaAhHQJGt88q4H5d1fZQoaAZHQGKU0oa1kUdoB03oA2gIR0CRsZFRYRukdX2UKGgGR0Bg5eig00m/aAdN6ANoCEdAkbITvZyuIXV9lChoBkdAZS9hwVCXyGgHTegDaAhHQJGzWKoAGSp1fZQoaAZHQGWUawUxmCloB03oA2gIR0CRuC5mh/RWdX2UKGgGR0BjJjiqABkqaAdN6ANoCEdAkbu+6mO2iXV9lChoBkdATo0RUWEbpGgHS8loCEdAkb7Cu6mO2nV9lChoBkdAUbdiH6/IsGgHS+RoCEdAkb70AT7EYXV9lChoBkdAZjuDe0ojOmgHTegDaAhHQJHJGU3XI2h1fZQoaAZHQGNo0JF9a2ZoB03oA2gIR0CRzyqI7/4qdX2UKGgGR0BnUtYU34sVaAdN6ANoCEdAkdBQcT8HfXV9lChoBkdAPIaIacZtN2gHS91oCEdAkdX/e1rqMXV9lChoBkdAZB4jWTX8O2gHTegDaAhHQJHgDHBDXvp1fZQoaAZHQGPSqYqoZQ5oB03oA2gIR0CR4dXD3ueCdX2UKGgGR0BgQrUqhDgJaAdN6ANoCEdAkeZ6Xv6TGHV9lChoBkdAZCTndO6/ZmgHTegDaAhHQJHvibb1yvN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 232, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.1293317, "std_reward": 20.310416496541098, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-16T12:08:09.382342"}