Dnyaneshwar commited on
Commit
34d08a9
1 Parent(s): a62e061

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: hing-mbert-finetuned-code-mixed-DS
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # hing-mbert-finetuned-code-mixed-DS
19
+
20
+ This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.0518
23
+ - Accuracy: 0.7545
24
+ - Precision: 0.7041
25
+ - Recall: 0.7076
26
+ - F1: 0.7053
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2.7277800745684633e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 43
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 3
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 0.8338 | 1.0 | 497 | 0.6922 | 0.7163 | 0.6697 | 0.6930 | 0.6686 |
58
+ | 0.5744 | 2.0 | 994 | 0.7872 | 0.7324 | 0.6786 | 0.6967 | 0.6845 |
59
+ | 0.36 | 3.0 | 1491 | 1.0518 | 0.7545 | 0.7041 | 0.7076 | 0.7053 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.21.3
65
+ - Pytorch 1.12.1+cu113
66
+ - Datasets 2.4.0
67
+ - Tokenizers 0.12.1